We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inho...We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inhomogeneous Monge-Ampère equation. The purpose of this paper is to construct and classify the common invariant solutions for those equations. For this aim, we have used the results concerning construction and classification of invariant solutions for the (1 + 3)-dimensional P(1,4)-invariant Eikonal equation, since this equation is the simplest among the equations under investigation. The direct checked allowed us to conclude that the majority of invariant solutions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of low-dimensional (dimL ≤ 3) nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4), satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.展开更多
We present the results obtained concerning the classification of symmetry reduction of the (1 + 3)-dimensional inhomogeneous <span style="white-space:nowrap;">Monge-Ampère</span> equation to...We present the results obtained concerning the classification of symmetry reduction of the (1 + 3)-dimensional inhomogeneous <span style="white-space:nowrap;">Monge-Ampère</span> equation to first-order ODEs. Some classes of the invariant solutions are constructed.展开更多
文摘We consider the following (1 + 3)-dimensional P(1,4)-invariant partial differential equations (PDEs): the Eikonal equation, the Euler-Lagrange-Born-Infeld equation, the homogeneous Monge-Ampère equation, the inhomogeneous Monge-Ampère equation. The purpose of this paper is to construct and classify the common invariant solutions for those equations. For this aim, we have used the results concerning construction and classification of invariant solutions for the (1 + 3)-dimensional P(1,4)-invariant Eikonal equation, since this equation is the simplest among the equations under investigation. The direct checked allowed us to conclude that the majority of invariant solutions of the (1 + 3)-dimensional Eikonal equation, obtained on the base of low-dimensional (dimL ≤ 3) nonconjugate subalgebras of the Lie algebra of the Poincaré group P(1,4), satisfy all the equations under investigation. In this paper, we present obtained common invariant solutions of the equations under study as well as the classification of those invariant solutions.
文摘We present the results obtained concerning the classification of symmetry reduction of the (1 + 3)-dimensional inhomogeneous <span style="white-space:nowrap;">Monge-Ampère</span> equation to first-order ODEs. Some classes of the invariant solutions are constructed.
基金supported by FAPESP 2019/03655-4,CNPq 302980/2019-9,RFBR 20-01-00030,MTM2016-79661-P,AP08052405 of MES RK,FPU scholarship(Spain)FCT UIDB/00212/2020 and UIDP/00212/2020+1 种基金supported by the Austrian Science Foundation FWF,grant P 33811-N,by Agencia Estatal de Investigación(Spain),grant PID2020-115155GB-I00(European FEDER support included,UE)by Xunta de Galicia,grant ED431C 2019/10(European FEDER support included,UE).
文摘We give a classification of 5-and 6-dimensional complex one-generated nilpotent bicommutative algebras.