Lightlike warped product manifolds are considered in this paper. The geometry of lightlike submanifolds is difficult to study since the normal vector bundle intersects with the tangent bundle. Due to the degenerate me...Lightlike warped product manifolds are considered in this paper. The geometry of lightlike submanifolds is difficult to study since the normal vector bundle intersects with the tangent bundle. Due to the degenerate metric, the induced connection is not metric and it follows that the Riemannian curvature tensor is not algebraic. In this situation, some basic techniques of calulus are not useable. In this paper, we consider lightlike warped product as submanifold of semi-Riemannian manifold and establish some remarkable geometric properties from which we establish some conditions on the algebraicity of the induced Riemannian curvature tensor.展开更多
In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the ...In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.展开更多
Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we ...Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we firstly investigate the optimal containment control problem using the inverse optimal control method,where all states of followers asymptotically converge to the convex hull spanned by the leaders while some quadratic performance indexes get minimized.A sufficient condition for existence of the distributed optimal containment control protocol is derived.By introducing the parametric algebraic Riccati equation(PARE),it is strictly proved that the global performance index can be used to approximate the standard minimumenergy performance index as the parameters tends to infinity.In consequence,the standard minimum-energy cooperative containment control can be solved by local steady state feedback protocols.展开更多
In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multipli...In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multiplicative derivations and show that every Boolean algebra is isomorphic to the algebra of all implicative derivations.Finally,we show that the sets of multiplicative and implicative derivations on bounded regular idempotent semihoops are in oneto-one correspondence.展开更多
This survey article illustrates many important current trends and perspectives for the field and their applications, of interest to researchers in modern algebra, mathematical logic and discrete mathematics. It covers...This survey article illustrates many important current trends and perspectives for the field and their applications, of interest to researchers in modern algebra, mathematical logic and discrete mathematics. It covers a number of directions, including completeness theorem and compactness theorem for hyperidentities;the characterizations of the Boolean algebra of n-ary Boolean functions and the bounded distributive lattice of n-ary monotone Boolean functions;the functional representations of finitely-generated free algebras of various varieties of lattices via generalized Boolean functions, etc.展开更多
In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better...In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.展开更多
In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and...In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and describe the extended eigenvalue of the integral operator V.We generalize the results in[1,2,6,11,16].展开更多
A discrete Hopf fibration of S15 over S8 with S7 (unit octonions) as fibers leads to a 16D Polytope P16 with 4320 vertices obtained from the convex hull of the 16D Barnes-Wall lattice Λ16. It is argued (conjectured) ...A discrete Hopf fibration of S15 over S8 with S7 (unit octonions) as fibers leads to a 16D Polytope P16 with 4320 vertices obtained from the convex hull of the 16D Barnes-Wall lattice Λ16. It is argued (conjectured) how a subsequent 2-1 mapping (projection) of P16 onto a 8D-hyperplane might furnish the 2160 vertices of the uniform 241 polytope in 8-dimensions, and such that one can capture the chain sequence of polytopes 241,231,221,211in D=8,7,6,5dimensions, leading, respectively, to the sequence of Coxeter groups E8,E7,E6,SO(10)which are putative GUT group candidates. An embedding of the E8⊕E8and E8⊕E8⊕E8lattice into the Barnes-Wall Λ16 and Leech Λ24 lattices, respectively, is explicitly shown. From the 16D lattice E8⊕E8one can generate two separate families of Elser-Sloane 4D quasicrystals (QC’s) with H4 (icosahedral) symmetry via the “cut-and-project” method from 8D to 4D in each separate E8 lattice. Therefore, one obtains in this fashion the Cartesian product of two Elser-Sloane QC’s Q×Qspanning an 8D space. Similarly, from the 24D lattice E8⊕E8⊕E8one can generate the Cartesian product of three Elser-Sloane 4D quasicrystals (QC’s) Q×Q×Qwith H4 symmetry and spanning a 12D space.展开更多
Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bound...Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .展开更多
This paper proposes the novel algebraic structure of a linear ring space. A linear ring space is an order triad consisting of two rings, and a linear map between the two rings. The definition of quasi-linearity is dis...This paper proposes the novel algebraic structure of a linear ring space. A linear ring space is an order triad consisting of two rings, and a linear map between the two rings. The definition of quasi-linearity is discussed, in addition to the examination of properties and classifications of linear ring spaces. Particularly, the ring of holomorphic functions on a region of the complex plane is examined, and the manner in which it generates an iterated linear ring space under the complex derivative operator. This notion is then generalized to all rings with nth order linear and surjective operators. Basic operator theory regarding the classifications of linear ring maps is also covered.展开更多
The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are ...The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value.展开更多
In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates th...In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates the Pauli algebra, the split-biquaternion algebra and the split-quaternion algebra, we relate these algebras to Clifford algebras and we show the emergence of the stabilized Poincaré-Heisenberg algebra from the split-tetraquaternion algebra. We list without going into details some of their applications in Physics and in Born geometry.展开更多
The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms cond...The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms conducive to the output are sealed and inaccessible. In practice, other than the CPU timing, the applied inversion method is irrelevant. This research-oriented article discusses one such process, the Cayley-Hamilton (C.H.) [1]. Pursuing the process symbolically reveals its unpublished hidden mathematical characteristics even in the original article [1]. This article expands the general vision of the original named method without altering its practical applications. We have used the famous CAS Mathematica [2]. We have briefed the theory behind the method and applied it to different-sized symbolic and numeric matrices. The results are compared to the named CAS’s sealed, packaged library commands. The codes are given, and the algorithms are unsealed.展开更多
The hierarchy of bulk actions is developed which are associated with Chern-Simons theories. The connection between the bulk and edge arising from the requirement there is a cancelation of an anomaly which arises in th...The hierarchy of bulk actions is developed which are associated with Chern-Simons theories. The connection between the bulk and edge arising from the requirement there is a cancelation of an anomaly which arises in the theory. A duality transformation is studied for the Chern-Simons example. The idea that is used has been employed to describe duality in a scalar theory. The link between the edge theory with the Chern-Simons theory in the bulk then suggests that similar transformations can be implemented in the bulk Chern-Simons theory as well.展开更多
Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent m...Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).展开更多
The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers ...The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme.展开更多
The superiority of hypothetical quantum computers is not due to faster calculations but due to different schemes of calculations running on special hardware. The core of quantum computing follows the way a state of a ...The superiority of hypothetical quantum computers is not due to faster calculations but due to different schemes of calculations running on special hardware. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In conventional approach it is implemented through tensor product of qubits. In the geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on three-dimensional sphere.展开更多
In this work we derived and analyzed the stability structure of an order eight rational integrator wherein our numerator and denominator is 4 (i.e. m = n = 4) for the solution of problems in ordinary differential equa...In this work we derived and analyzed the stability structure of an order eight rational integrator wherein our numerator and denominator is 4 (i.e. m = n = 4) for the solution of problems in ordinary differential equations. The integrator was observed to be A-stable and also L-stable.展开更多
We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be ...We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be decomposed into at least two nontrivial codes as the same for the languages. In the paper, a linear time algorithm is designed, which finds the prime decomposition. If codes or finite languages are presented as given by its minimal deterministic automaton, then from the point of view of abstract algebra and graph theory, this automaton has special properties. The study was conducted using system for computational Discrete Algebra GAP. .展开更多
As a general feature, the electric field of a localized electric charge distribution diminishes as the distance from the distribution increases;there are exceptions to this feature. For instance, the electric field of...As a general feature, the electric field of a localized electric charge distribution diminishes as the distance from the distribution increases;there are exceptions to this feature. For instance, the electric field of a charged ring (being a localized charge distribution) along its symmetry axis perpendicular to the ring through its center rather than as expected being a diminishing field encounters a local maximum bump. It is the objective of this research-oriented study to analyze the impact of this bump on the characteristics of a massive point-like charged particle oscillating along the symmetry axis. Two scenarios with and without gravity along the symmetry axis are considered. In addition to standard kinematic diagrams, various phase diagrams conducive to a better understanding are constructed. Applying Computer Algebra System (CAS), [1] [2] most calculations are carried out symbolically. Finally, by assigning a set of reasonable numeric parameters to the symbolic quantities various 3D animations are crafted. All the CAS codes are included.展开更多
文摘Lightlike warped product manifolds are considered in this paper. The geometry of lightlike submanifolds is difficult to study since the normal vector bundle intersects with the tangent bundle. Due to the degenerate metric, the induced connection is not metric and it follows that the Riemannian curvature tensor is not algebraic. In this situation, some basic techniques of calulus are not useable. In this paper, we consider lightlike warped product as submanifold of semi-Riemannian manifold and establish some remarkable geometric properties from which we establish some conditions on the algebraicity of the induced Riemannian curvature tensor.
文摘In this paper,X is a locally compact Hausdorff space and A is a Banach algebra.First,we study some basic features of C0(X,A)related to BSE concept,which are gotten from A.In particular,we prove that if C0(X,A)has the BSE property then A has so.We also establish the converse of this result,whenever X is discrete and A has the BSE-norm property.Furthermore,we prove the same result for the BSE property of type I.Finally,we prove that C0(X,A)has the BSE-norm property if and only if A has so.
基金supported by the National Nat-ural Science Foundation of China(61873215,62103342)the Natural Science Foundation of Sichuan Province(2022NSFSC0470,2022NSFSC0892).
文摘Dear Editor,This letter focuses on the distributed optimal containment control of continuous-time multi-agent systems(CTMASs)with respect to the minimum-energy performance index over fixed topology.To achieve this,we firstly investigate the optimal containment control problem using the inverse optimal control method,where all states of followers asymptotically converge to the convex hull spanned by the leaders while some quadratic performance indexes get minimized.A sufficient condition for existence of the distributed optimal containment control protocol is derived.By introducing the parametric algebraic Riccati equation(PARE),it is strictly proved that the global performance index can be used to approximate the standard minimumenergy performance index as the parameters tends to infinity.In consequence,the standard minimum-energy cooperative containment control can be solved by local steady state feedback protocols.
基金Supported by the National Natural Science Foundation of China(12271319).
文摘In this paper,we discuss the related properties of some particular derivations in semihoops and give some characterizations of them.Then,we prove that every Heyting algebra is isomorphic to the algebra of all multiplicative derivations and show that every Boolean algebra is isomorphic to the algebra of all implicative derivations.Finally,we show that the sets of multiplicative and implicative derivations on bounded regular idempotent semihoops are in oneto-one correspondence.
文摘This survey article illustrates many important current trends and perspectives for the field and their applications, of interest to researchers in modern algebra, mathematical logic and discrete mathematics. It covers a number of directions, including completeness theorem and compactness theorem for hyperidentities;the characterizations of the Boolean algebra of n-ary Boolean functions and the bounded distributive lattice of n-ary monotone Boolean functions;the functional representations of finitely-generated free algebras of various varieties of lattices via generalized Boolean functions, etc.
基金partially supported by the Natural Sciences and Engineering Research Council of Canada(2019-03907)。
文摘In this paper,we define a new class of control functions through aggregate special functions.These class of control functions help us to stabilize and approximate a tri-additiveψ-functional inequality to get a better estimation for permuting tri-homomorphisms and permuting tri-derivations in unital C*-algebras and Banach algebras by the vector-valued alternative fixed point theorem.
基金Supported by National Natural Science Foundation of China(11801094).
文摘In this paper,we consider the algebraic structure of derivative Hardy Spaces.By using the method of[6,12,15],we get the Duhamel product forming Banach algebra in derivative Hardy Spaces,and invertibility criterion,and describe the extended eigenvalue of the integral operator V.We generalize the results in[1,2,6,11,16].
文摘A discrete Hopf fibration of S15 over S8 with S7 (unit octonions) as fibers leads to a 16D Polytope P16 with 4320 vertices obtained from the convex hull of the 16D Barnes-Wall lattice Λ16. It is argued (conjectured) how a subsequent 2-1 mapping (projection) of P16 onto a 8D-hyperplane might furnish the 2160 vertices of the uniform 241 polytope in 8-dimensions, and such that one can capture the chain sequence of polytopes 241,231,221,211in D=8,7,6,5dimensions, leading, respectively, to the sequence of Coxeter groups E8,E7,E6,SO(10)which are putative GUT group candidates. An embedding of the E8⊕E8and E8⊕E8⊕E8lattice into the Barnes-Wall Λ16 and Leech Λ24 lattices, respectively, is explicitly shown. From the 16D lattice E8⊕E8one can generate two separate families of Elser-Sloane 4D quasicrystals (QC’s) with H4 (icosahedral) symmetry via the “cut-and-project” method from 8D to 4D in each separate E8 lattice. Therefore, one obtains in this fashion the Cartesian product of two Elser-Sloane QC’s Q×Qspanning an 8D space. Similarly, from the 24D lattice E8⊕E8⊕E8one can generate the Cartesian product of three Elser-Sloane 4D quasicrystals (QC’s) Q×Q×Qwith H4 symmetry and spanning a 12D space.
文摘Given a compact and regular Hausdorff measure space (X, μ), with μ a Radon measure, it is known that the generalised space M(X) of all the positive Radon measures on X is isomorphic to the space of essentially bounded functions L<sup>∞</sup>(X, μ) on X. We confirm that the commutative von Neumann algebras M⊂B(H), with H=L<sup>2</sup>(X, μ), are unitary equivariant to the maximal ideals of the commutative algebra C(X). Subsequenly, we use the measure groupoid to formulate the algebraic and topological structures of the commutative algebra C(X) following its action on M(X) and define its representation and ergodic dynamical system on the commutative von Neumann algebras of M of B(H) .
文摘This paper proposes the novel algebraic structure of a linear ring space. A linear ring space is an order triad consisting of two rings, and a linear map between the two rings. The definition of quasi-linearity is discussed, in addition to the examination of properties and classifications of linear ring spaces. Particularly, the ring of holomorphic functions on a region of the complex plane is examined, and the manner in which it generates an iterated linear ring space under the complex derivative operator. This notion is then generalized to all rings with nth order linear and surjective operators. Basic operator theory regarding the classifications of linear ring maps is also covered.
文摘The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value.
文摘In this paper, from the spacetime algebra associated with the Minkowski space ℝ3,1by means of a change of signature, we describe a quaternionic representation of the split-tetraquaternion algebra which incorporates the Pauli algebra, the split-biquaternion algebra and the split-quaternion algebra, we relate these algebras to Clifford algebras and we show the emergence of the stabilized Poincaré-Heisenberg algebra from the split-tetraquaternion algebra. We list without going into details some of their applications in Physics and in Born geometry.
文摘The inversion of a non-singular square matrix applying a Computer Algebra System (CAS) is straightforward. The CASs make the numeric computation efficient but mock the mathematical characteristics. The algorithms conducive to the output are sealed and inaccessible. In practice, other than the CPU timing, the applied inversion method is irrelevant. This research-oriented article discusses one such process, the Cayley-Hamilton (C.H.) [1]. Pursuing the process symbolically reveals its unpublished hidden mathematical characteristics even in the original article [1]. This article expands the general vision of the original named method without altering its practical applications. We have used the famous CAS Mathematica [2]. We have briefed the theory behind the method and applied it to different-sized symbolic and numeric matrices. The results are compared to the named CAS’s sealed, packaged library commands. The codes are given, and the algorithms are unsealed.
文摘The hierarchy of bulk actions is developed which are associated with Chern-Simons theories. The connection between the bulk and edge arising from the requirement there is a cancelation of an anomaly which arises in the theory. A duality transformation is studied for the Chern-Simons example. The idea that is used has been employed to describe duality in a scalar theory. The link between the edge theory with the Chern-Simons theory in the bulk then suggests that similar transformations can be implemented in the bulk Chern-Simons theory as well.
文摘Because homology on compact homogeneous nilpotent manifolds is closely related to homology on Lie algebras, studying homology on Lie algebras is helpful for further studying homology on compact homogeneous nilpotent manifolds. So we start with the differential sequence of Lie algebras. The Lie algebra g has the differential sequence E0,E1,⋯,Es⋯, which leads to the chain complex Es0→Δs0Ess→Δs1⋯→ΔsiEs(i+1)s→Δsi+1⋯of Esby discussing the chain complex E10→Δ10E11→Δ11⋯→Δ1r−1E1r→Δ1r⋯of E1and proves that Es+1i≅Hi(Es)=KerΔsi+1/ImΔsiand therefore Es+1≅H(Es)by the chain complex of Es(see Theorem 2).
文摘The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme.
文摘The superiority of hypothetical quantum computers is not due to faster calculations but due to different schemes of calculations running on special hardware. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In conventional approach it is implemented through tensor product of qubits. In the geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on three-dimensional sphere.
文摘In this work we derived and analyzed the stability structure of an order eight rational integrator wherein our numerator and denominator is 4 (i.e. m = n = 4) for the solution of problems in ordinary differential equations. The integrator was observed to be A-stable and also L-stable.
文摘We investigate decomposition of codes and finite languages. A prime decomposition is a decomposition of a code or languages into a concatenation of nontrivial prime codes or languages. A code is prime if it cannot be decomposed into at least two nontrivial codes as the same for the languages. In the paper, a linear time algorithm is designed, which finds the prime decomposition. If codes or finite languages are presented as given by its minimal deterministic automaton, then from the point of view of abstract algebra and graph theory, this automaton has special properties. The study was conducted using system for computational Discrete Algebra GAP. .
文摘As a general feature, the electric field of a localized electric charge distribution diminishes as the distance from the distribution increases;there are exceptions to this feature. For instance, the electric field of a charged ring (being a localized charge distribution) along its symmetry axis perpendicular to the ring through its center rather than as expected being a diminishing field encounters a local maximum bump. It is the objective of this research-oriented study to analyze the impact of this bump on the characteristics of a massive point-like charged particle oscillating along the symmetry axis. Two scenarios with and without gravity along the symmetry axis are considered. In addition to standard kinematic diagrams, various phase diagrams conducive to a better understanding are constructed. Applying Computer Algebra System (CAS), [1] [2] most calculations are carried out symbolically. Finally, by assigning a set of reasonable numeric parameters to the symbolic quantities various 3D animations are crafted. All the CAS codes are included.