In order to determine the role of alginate-derived oligosaccharides (ADO) in drought stress resistance of tomato (Ly-copersicon esculentum Miller) seedlings, the leaves were exposed to different concentrations of ADO ...In order to determine the role of alginate-derived oligosaccharides (ADO) in drought stress resistance of tomato (Ly-copersicon esculentum Miller) seedlings, the leaves were exposed to different concentrations of ADO (0.05%, 0.10%, 0.20%, 0.30% and 0.50%) after drought stress was simulated by exposing the roots to 0.6 molL-1 PEG-6000 solution for 6 h. Changes in biomass, electrolyte leakage and malondialdehyde (MDA), free proline, total soluble sugars (TSS) and abscisic acid (ABA), the enzyme activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) were measured to investigate the effects of ADO treatment. The results showed that the treatment with an ADO concentration of 0.20% exhibited the highest performance of drought stress resistance in the tomato seedlings by decreasing the electrolyte leakage and the concentration of MDA, increasing the contents of free proline, TSS and ABA, and increasing the activities of CAT, SOD, POD and PAL after treatment with ADO. It is suggested that changes in electrolyte leakage, MDA, osmotic solutes, ABA, anti-oxidative enzyme and PAL activities were responsible for the increased drought stress resistance in tomato seedlings. To our best knowledge, this is the first report of the effect of ADO treatment on enhancing the drought stress resistance of tomato seedlings.展开更多
Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trac...Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trace elements.Methods:The preparation process of chitosan oligosaccharide selenium(COSSe)was optimized by the response surface method,followed by a detailed analysis of the resultant compound’s characteristics.The anti-cancer activity of COSSe was studied using the human ovarian cancer cell line SKOV3 as a cell model.Results:The prepared COSSe response surface was well predicted,indicating successful chitosan oligosaccharide binding with selenium.Response surface method analyses identified the optimal synthesis conditions for COSSe:the reaction time of 5.08 h,the reaction temperature of 71.8°C,and mass ratio(Na2SeO3:chitosan oligosaccharide)of 1.02.Under the optimal conditions,the final product,the selenium content,reached 1.302%.The results of cell experiments showed that COSSe significantly inhibited SKOV3 proliferation in a concentration-dependent manner.RNA-seq results showed that chitosan oligosaccharide and COSSe significantly modulated the expression of genes’DNA metabolic processes and cell cycle in SKOV3 cells.Gene enrichment analysis showed the inhibition of the cell cycle,and the results of flow cytometry showed that SKOV3 cells increased in the S phase and decreased in the G2/M phase,with a noted suppression in the protein expression of cyclin-dependent kinase 2(CDK2)and cyclin A1(CCNA1).Conclusion:COSSe has a stronger effect than chitosan oligosaccharide,leading to the arrest of the cell cycle in the S phase.Thus,COSSe may be an effective candidate for the treatment of ovarian cancer.展开更多
The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging...The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging.展开更多
Unlike chemosynthetic drugs designed for specific molecular and disease targets,active small-molecule natural products typically have a wide range of bioactivities and multiple targets,necessitating extensive screenin...Unlike chemosynthetic drugs designed for specific molecular and disease targets,active small-molecule natural products typically have a wide range of bioactivities and multiple targets,necessitating extensive screening and development.To address this issue,we propose a strategy for the direct in situ microdynamic examination of potential drug candidates to rapidly identify their effects and mechanisms of action.As a proof-of-concept,we investigated the behavior of mussel oligosaccharide(MOS-1)by tracking the subcellular dynamics of fluorescently labeled MOS-1 in cultured cells.We recorded the entire dynamic process of the localization of fluorescein isothiocyanate(FITC)-MOS-1 to the lysosomes and visualized the distribution of the drug within the cell.Remarkably,lysosomes containing FITC-MOS-1 actively recruited lipid droplets,leading to fusion events and increased cellular lipid consumption.These drug behaviors confirmed MOS-1 is a candidate for the treatment of lipid-related diseases.Furthermore,in a high-fat HepG2 cell model and in high-fat diet-fed apolipoprotein E(ApoE)^(-/-)mice,MOS-1 significantly promoted triglyceride degradation,reduced lipid droplet accumulation,lowered serum triglyceride levels,and mitigated liver damage and steatosis.Overall,our work supports the prioritization of in situ visual monitoring of drug location and distribution in subcellular compartments during the drug development phase,as this methodology contributes to the rapid identification of drug indications.Collectively,this methodology is significant for the screening and development of selective small-molecule drugs,and is expected to expedite the identification of candidate molecules with medicinal effects.展开更多
Two oligosaccharide fractions(MLO 2-1 and 2-2)were purified from enzymatic hydrolysate of mulberry leaf polysaccharide.The results of simulated digestion showed that MLO 2-2 was a digestible oligosaccharide,which coul...Two oligosaccharide fractions(MLO 2-1 and 2-2)were purified from enzymatic hydrolysate of mulberry leaf polysaccharide.The results of simulated digestion showed that MLO 2-2 was a digestible oligosaccharide,which could be degraded by human digestive juice;while MLO 2-1 possessed the non-digestible property in the upper gastrointestinal tract and performed the function by regulating the gut microbiota.Hence,MLO 2-1 was selected for the further analysis.The structure of MLO 2-1 was elucidated as follow:α-T-Glcp-(1→3)-β-Glcp-(1→5)-α-Araf-(1→5)-α-Araf-1→5)-α-Araf-(1→3)-α-(2-OAc)-Glcp-1.The in vitro fecal fermentation results showed that MLO 2-1 could modulate the composition of gut microbiota.Meanwhile,MLO 2-1 was effectively metabolized by fecal bacteria to produce lactate and short chain fatty acids,especially acetate and butyrate.The specific metabolic pathways of MLO 2-1 by gut microbiota were further illuminated.Gut microbiota analysis revealed that MLO 2-1 selectively promoted the growth of Ligilactobacillus murinus,a commensal bacterium presented a reduced level in T2DM mice.Animal experiments indicated that MLO 2-1 and L.murinus exhibited hypoglycemic activities.These results demonstrated that MLO 2-1 might alleviate T2DM by selectively accelerating the proliferation of L.murinus.展开更多
Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with ...Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture.展开更多
[Objective] The induced disease resistance of Antarctic bacteria B-3 extracellular oligosaccharide on cucumber was studied.[Method] Taking the cucumber seedlings as experimental materials,the molecular weight,monosacc...[Objective] The induced disease resistance of Antarctic bacteria B-3 extracellular oligosaccharide on cucumber was studied.[Method] Taking the cucumber seedlings as experimental materials,the molecular weight,monosaccharide composition of Antarctic bacteria B-3 extracellular oligosaccharide were studied,its induced effect on the defense enzyme in cucumber leaves and the induced resistance against powdery mildew were also investigated.[Result] Through gel permeation chromatography,the molecular weight of B-3 oligosaccharides was determined to be 2 112 Da;B-3 oligosaccharides was composed by two monosaccharides including of mannose and glucose.The activities of chinitase,β-1,3-glucanse,phenylanine,ammonialyse(PAL),superoxide dismutase(SOD),and peroxidase(POD)in cucumber seedlings all increased compared with control when 0.3%,0.5% and 0.8% B-3 extracellular oligosaccharide were sprayed on the seedlings of cucumber for different times,respectively,which had the similar induction effect with 0.5% chitosan;at the same time,0.5% oligosaccharides could significantly reduce the disease index of cucumber powdery mildew,the control effect reached 24.49%.[Conclusion] B-3 oligosaccharides is expected to be developed as a new type of resistance elicitor.展开更多
The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (la...The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (later growth phase) were exposed to the elicitor (20 mg/L) for 4 d, the maximum content of artemisinin reached 1.15 mg/g, a 64.29% increment over the control. The electron X-ray microanalysis disclosed the rapid accumulation of Ca 2+ in the elicited cortical cells of hairy root. The electronic microscope observation revealed the high electron density area in vacuole of elicited cells. During the first day of elicitation the peroxidase activity of hairy roots was improved sharply. Some cellular morphological changes including cell shrinkage, condensation of cytoplasm and nuclear fragmentation, coincident with the appearance of DNA ladders, were observed after the third day of elicitation. It was suggested that the oligosaccharide elicitor triggered the programmed cell death, which may provide the substance or chemical signal for artemisinin biosynthesis.展开更多
Taxol production of Taxus chinensis (Pilger) Rehd. var. mairei (Lemee et Lévl.) Cheng et L. K. Fu induced by oligosaccharide from Fusarium oxysporum f. vasinfectum (Atkinson) Snyder et Hansen was ...Taxol production of Taxus chinensis (Pilger) Rehd. var. mairei (Lemee et Lévl.) Cheng et L. K. Fu induced by oligosaccharide from Fusarium oxysporum f. vasinfectum (Atkinson) Snyder et Hansen was studied in suspension cultures, and it was found that oligosaccharide triggered cell apoptosis. Under transmission electron microscope the following morphological changes were observed: cell shrinkage, condensation of cytoplasm, nuclear fragmentation, and the increase of high electron density bodies in vacuole in great quantity. In oligosaccharide_treated cells, agarose gel electrophoresis revealed that DNA was digested into oligonucleosomal fragments that were times of 200 bp appearing as DNA ladders. Control cells were in normal physiological state, they were intact, abundant in organelle and with integral nucleus DNA, and the rate of taxol biosynthesis in these cells was very low. After the oligosaccharide to the culture system, the defense system of cells was elicited and the secondary metabolism was strengthened, i.e. phenolics were accumulated in the medium, the activity of polyphenol oxidase (PPO) was increased quickly and secondary wall of cells was thickened. The activity of L _phenylalanine ammonia lyase (PAL), the critical enzyme of the phenylpropanoid pathway, was increased promptly 1 h after elicitation. The rate of taxol production was improved sharply and the maximal taxol concentration at 72 h was six times that of control. Appearance of cell apoptosis was accompanied with the highest concentration of taxol in suspension cultures.展开更多
Background: Alginate oligosaccharide(AOS), produced from alginate by alginate lyase-mediated depolymerisation, is a potential substitute for antibiotics and possesses growth-enhancing effects. Nevertheless, the mechan...Background: Alginate oligosaccharide(AOS), produced from alginate by alginate lyase-mediated depolymerisation, is a potential substitute for antibiotics and possesses growth-enhancing effects. Nevertheless, the mechanisms by which AOS regulates porcine growth remain to be elucidated. Therefore, we investigated the AOS-mediated changes in the growth performance of weaned pigs by determining the intestinal morphology, barrier function,as well as epithelium apoptosis.Methods: Twenty-four weaned pigs were distributed into two groups(n = 12) and received either a basal diet(control group) or the same diet supplemented with 100 mg/kg AOS. On d 15, D-xylose(0.1 g/kg body weight)was orally administrated to eight randomly selected pigs per treatment, and their serum and intestinal mucosa samples were collected 1 h later.Results: Our results showed that inclusion of AOS in the diet for 2 wk increased(P < 0.05) the average daily body weight gain in weaned pigs. Notably, AOS supplementation ameliorated the intestinal morphology and barrier function, as suggested by the enhanced(P < 0.05) intestinal villus height, secretory immunoglobulin A content and goblet cell counts. Compared to the control group, AOS ingestion both decreased(P < 0.05) the total apoptotic percentage and increased(P < 0.05) the proportion of S phase in the intestinal epithelial cells. Furthermore, AOS not only up-regulated(P < 0.05) the B-cell lymphoma-2(BCL2) transcriptional level but also down-regulated(P < 0.05) the B-cell lymphoma-2-associated X protein(BAX), cysteinyl aspartate-specific proteinase-3(caspase-3) and caspase-9 transcriptional levels in the small intestine.Conclusions: In summary, this study provides evidence that supplemental AOS beneficially affects the growth performance of weaned pigs, which may result from the improved intestinal morphology and barrier function,as well as the inhibited enterocyte death, through reducing apoptosis via mitochondria-dependent apoptosis.展开更多
In order to study the structure of lotus (Nelumbo nucifera Gaertn) seed oligosaccharides and their effect on the proliferation ofBifidobacterium adolescentis, we extracted the oligosaccharides from seeds collected f...In order to study the structure of lotus (Nelumbo nucifera Gaertn) seed oligosaccharides and their effect on the proliferation ofBifidobacterium adolescentis, we extracted the oligosaccharides from seeds collected from Jianning County, China. We preliminarily characterized the groups, molecular weights, molecular formulae, component monosaccharides and glycosidic bonds using mass spectrometry (MS) and nuclear magnetic resonance (NMR) after isolation and purification. The lotus seed oligosaccharides contained glycosidic bonds Manp-(1→), Galp-(1→), α(1→6)-Glup and α(1→6)-Manp; and mannose was the chief component monosaccharide. NMR analyses showed that ~t-glycosidic bonds and pyranoid rings were predominant in the oligosaccharides. The MS analyses showed that lotus seed oligosaccharides consisted of three oligosaccharides of different polymerization degree, with relative molecular weights of 342, 504 and 666 Da, and corresponding molecular formulae C12H22O11, C18H32O16 and C24H42O21. Research on the effect of lotus seed oligosaccharides on the proliferation orB. adolescentis showed that they effectively promoted the production of acetic, propionic and butyric acids by B. adolescentis through fermentation, and their effect was stronger than that of fructo-, xylo- and isomalto-oligosaccharides. Lotus seed oligosaccharides have potential as a new functional probiotic and lotus seeds should be further explored and utilized as a source of oligosaccharides.展开更多
Microbiota in the gastrointestinal tract (GIT) of piglets during weaning transition can experience a sharp change which could result in growth reduction and diarrhea of weaned piglets. Dietary manipulations can play...Microbiota in the gastrointestinal tract (GIT) of piglets during weaning transition can experience a sharp change which could result in growth reduction and diarrhea of weaned piglets. Dietary manipulations can play an important role in attenuating such changes caused by weaning stress. Therefore, ileal and colonic contents of weaned piglets were used as inocula, mannan oligosaccharide (MOS) or sugar beet pulp (SBP) was supplied as single energy sources to investigate effects of MOS or SBP on the shifts of gastro-intestinal microflora and lactobacilli populations. The universal bacteria- and lactobacilli-specific PCR/denaturing gradient gel electrophoresis (DGGE), cloning and sequencing techniques were used. DGGE profiles of the universal bacteria showed that great changes were found in the position, numbers and intensity of dominant bands after fermentation. The similarity of bacterial community between ileum and colon was increased to 85-97% by MOS or SBP treatment after fermentation from the similarity with 20% before fermentation. MOS treatment significantly increased the bacterial diversity and band number in both ileal and colonic fermentation (P〈0.05). SBP treatment significantly increased the bacterial diversity and band number in colon (P〈0.05). It implies that some species were enriched by the addition of MOS or SBP to increase the similarity and diversity of bacterial community in weaned piglets. Five specific bands appearing in MOS or SBP treatment group after fermentation were cloned and sequenced, the changes of species related to Prevotella and Ruminococcus were observed. Two bands related to uncultured bacterium with 98% similarity were detected by MOS or SBP treatment. However, there were no effects on the similarity, diversity index and lactobacilli species revealed by MOS or SBP treatment. These results imply that MOS or SBP could have beneficial effects on the weaning piglets by stablizing microbiota in the GIT microflora.展开更多
One hundred and forty-four Avin broilers (1 d of age) were randomly divided into six groups, with three replicates of eight birds each to study on the effects of different oligosaccharides on performance and availabil...One hundred and forty-four Avin broilers (1 d of age) were randomly divided into six groups, with three replicates of eight birds each to study on the effects of different oligosaccharides on performance and availability of nutrients in broilers. The control group(Group I)was fed with corn-soybean meal as basal diet, and the trial groups (Group II, III, IV,V and VI) were fed with basal diet plus 0.1% Manoligosaccharides(MOS), 0.3% Soybean-Oligosaccharides(SBOS), 0.3% Fructo-oligosaccharides(FOS), 0.3% α-Glucooligosaccharides(α-GOS) and 50 mg·L-1 Chlortetracycline(CTC), respectively. The results showed that the supplementation of oligosaccharides slightly improved daily gain and feed intake. SBOS supplementation improved, but MOS and α-GOS significantly decreased availability of energy. Oligosaccharides supplementation improved availability of energy, phosphorus, calcium, magnesium and iron, and significantly increased cholesterol content of fecal, and did not affect on availability of protein and cholesterol contents in serum and muscle. Availability of phosphorus of broilers fed with FOS was much higher than that with α-GOS. SBOS supplementation remarkably increased availability of iron.展开更多
Alginate oligosaccharides(AOS), belonging to the class of functional marine oligosaccharides, are low-molecular polymers linked by β-1,4-mannuronic acid(M) and α-1,4-guluronic acid(G), which could be classically obt...Alginate oligosaccharides(AOS), belonging to the class of functional marine oligosaccharides, are low-molecular polymers linked by β-1,4-mannuronic acid(M) and α-1,4-guluronic acid(G), which could be classically obtained by enzymatic hydrolysis of alginate. With low viscosity and good water solubility, as well as anti-oxidant, immune regulation, anti-bacterial and antiinflammatory activities, AOS have been widely used in medical science and functional food, green agriculture and other fields. As new bio-feed additives, AOS have broad potential applications in animal husbandry. In this review, the sources of alginate, chemical structure and preparation methods of AOS, and their biological activities and application in livestock and poultry are summarized. We expect this review could contribute to lay a foundation of application and further research for AOS in livestock and poultry.展开更多
Fibroblast growth factor 19(FGF19) functions as a hormone by affecting glucose metabolism. FGF19 improves glucose tolerance when overexpressed in mice with impaired glucose tolerance or diabetes. A functional cellular...Fibroblast growth factor 19(FGF19) functions as a hormone by affecting glucose metabolism. FGF19 improves glucose tolerance when overexpressed in mice with impaired glucose tolerance or diabetes. A functional cellular FGF19 receptor consists of FGF receptor(FGFR) and glycosaminoglycan complexed with either α Klotho or β Klotho. Interestingly, in mice with diet-induced diabetes, a single injection of FGF1 is enough to restore blood sugar levels to a healthy range. FGF1 binds heparin with high affinity whereas FGF19 does not, indicating that polysaccharides other than heparin might enhance FGF19/FGFR signaling. Using a FGFs/FGFR1 c signaling-dependent Ba F3 cell proliferation assay, we discovered that polyguluronate sulfate(PGS) and its oligosaccharides, PGS12 and PGS25, but not polyguluronate(PG), a natural marine polysaccharide, enhanced FGF19/FGFR1 c signaling better than that of heparin based on ~3H-thymidine incorporation. Interestingly, PGS6, PGS8, PGS10, PGS12, PGS25, and PGS, but not PG, had comparable FGF1/FGFR1 c signal-stimulating activity compared to that of heparin. These results indicated that PGS and its oligosaccharides were excellent FGF1/FGFR1 c and FGF19/FGFR1 c signaling enhancers at cellular level. Since the inexpensive PGS and PGS oligosaccharides can be absorbed through oral route, these seaweed-derived compounds merit further investigation as novel agents for the treatment of type 2 diabetes through enhancing FGF1/FGFR1 c and FGF19/FGFR1 c signaling in future.展开更多
Nucleotides (NT) and human milk oligosaccharides (HMO) individually affect epithelial cell growth, but their combined effects had not been studied. Herein, the impact of NT and HMO on cell proliferation, apoptosis, ne...Nucleotides (NT) and human milk oligosaccharides (HMO) individually affect epithelial cell growth, but their combined effects had not been studied. Herein, the impact of NT and HMO on cell proliferation, apoptosis, necrosis and cell cycle in the fetal epithelial cell line (FHs-74 Int) was determined. Cells were incubated with media containing 2.5% FBS and no epidermal growth factor (Control);fucosyllactose (FL) mix [85% 2’FL/15% 3’FL], sialyllactose (SL) mix [40% 6’SL/10% 3’SL/50% sialic acid (SA)] or LNnT at 125, 250, 500 or 1000 μg/mL with and without 250 μg/mL NT (43% CMP, 18.5% UMP, 16.4% AMP, and 22.0% GMP) for 24 or 72 h. NT alone significantly increased proliferation, but did not affect cell cycle or apoptosis/necrosis. All HMO treatments at 1000 μg/mL significantly decreased proliferation and some were also inhibitory at 250 or 500 μg/mL. When NT and HMO were simultaneously added, NT ameliorated the anti-proliferative effect of HMO. FL significantly increased cells in S phase and SL and LNnT treatments significantly increased cells in G2/M and S phases, which concomitantly decreased cells in G0/G1. HMO with NT significantly decreased the percent of cells in the G2/M phase compared to HMO alone. Higher HMO doses significantly increased the percentage of apoptotic and necrotic cells compared to control. In conclusion, HMO reduced cell proliferation and this effect is partially ameliorated by NT. It appears that HMO initially induced apoptosis/necrosis, which was later evidenced by G2/M cell cycle arrest and decreased proliferation.展开更多
Human milk oligosaccharides (HMO) contribute to innate immunity by enhancing growth of beneficial bacteria, epithelial cell maturation and mucosal barrier integrity. They have immunomodulatory effects and can block pa...Human milk oligosaccharides (HMO) contribute to innate immunity by enhancing growth of beneficial bacteria, epithelial cell maturation and mucosal barrier integrity. They have immunomodulatory effects and can block pathogen binding to host cell surface glycans or receptors. We investigated the effects of 2’-fucosyllactose (2’FL), 6’-sialyllactose (6’SL), 3’-sialyllactose (3’SL) and lacto-N-neoTetraose (LNnT) on human respiratory epithelial cell lines or peripheral blood mononuclear cells (PBMCs) following respiratory viral infectionin vitro. Expression of cytokines and viral load were monitored in infected cells. These biomarkers of innate immunity were selected since viral load and cytokine levels (IP-10, MIP-1α, IL-6, IL-8, TNF-α) have been correlated with disease severity in respiratory syncytial virus (RSV) and influenza (IAV) virus infectionin vivo. 2’FL significantly decreased RSV viral load and cytokines associated with disease severity (IL-6, IL-8, MIP-1α) and inflammation (TNF-α, MCP-1) in airway epithelial cells. LNnT and 6’SL significantly decreased IAV viral load in airway epithelial cells. 6’SL dose-dependently down-regulated IP-10 and TNF-α in RSV infected PBMCs. HMO at or below levels found in breast milk enhance innate immunity to respiratory viruses in vitro and may interact directly with cells to modulate biomarkers of innate immunity.展开更多
Kiwifruit is an extremely perishable fruit;postharvest disease and senescence during storage can reduce the fruit quality,resulting in economic loss.Considerable research effort has focused on identifying safe and cos...Kiwifruit is an extremely perishable fruit;postharvest disease and senescence during storage can reduce the fruit quality,resulting in economic loss.Considerable research effort has focused on identifying safe and cost-effective ways to preserve fresh kiwifruit.To this end,the present study investigated the effects of alginate oligosaccharide(AOS)soaking treatment on postharvest quality and disease in the‘Bruno’variety of kiwifruit.The involved physiological mechanisms were further explored.The results showed that AOS did not inhibit the growth of Botrytis cinerea in vitro,the causal agent of gray mold in kiwifruit,but reduced the incidence of gray mold and diameter of lesions of kiwifruit during storage.Kiwifruit treated with 50 mg·L-1 AOS showed a higher degree of firmness and lower soluble solid content than control fruit treated with distilled water.Moreover,AOS treatment inhibited the activity of polygalacturonase and pectinesterase,while enhancing the activity of polyphenoloxidase,l-phenylalanine ammonia lyase andβ-1,3-glucanase related to pathogen defense,and also improved total antioxidant capacity determined by the DPPH,FRAP,and ABTS methods in kiwifruit.These results indicate that 50 mg·L-1 AOS can confer disease resistance in kiwifruit during storage.展开更多
Inflammatory bowel disease(IBD)is characterized by recurrent attacks and long courses,and the number of patients has expanded rapidly year by year.Additionally,current conventional strategies exist serious adverse eff...Inflammatory bowel disease(IBD)is characterized by recurrent attacks and long courses,and the number of patients has expanded rapidly year by year.Additionally,current conventional strategies exist serious adverse effects.In this case,it is an urgent issue to find out an effective and safe treatment.Functional oligosaccharides possess safe and excellent physiological activities,and have attracted enormous attention due to their great therapeutic potential for IBD.This review emphasizes the attenuating effects of distinct functional oligosaccharides on IBD and their structure,and summarizes the main mechanisms from the aspects of regulating intestinal fl ora structure,repairing intestinal barrier,modulating immune function and mediating related signaling pathways in order to reveal the relationship between functional oligosaccharides,immune regulation,intestinal epithelial cells,gut fl ora and IBD treatment.Oligosaccharides possess excellent protective effects on IBD,and can be considered as safe and functional ingredients in the health food and pharmaceutical industry.展开更多
Brown algae is one of the three major types of marine algae and includes approximately 2000 species.It is widely dis-tributed in various seas around the world.Brown algae contain a plethora of active substances,such a...Brown algae is one of the three major types of marine algae and includes approximately 2000 species.It is widely dis-tributed in various seas around the world.Brown algae contain a plethora of active substances,such as polysaccharides,polyphe-nols,omega-3 fatty acids,and carotenoids.Laminarin,a type of storage carbohydrate found abundantly in brown algae,is mainly formed by glucose monomers linked byβ-1,3-glucosidic bonds and partialβ-1,6-glucosidic bonds.Laminarin and laminarin oligo-saccharides,which contain 2-10 saccharide units,have extensive biological activities,such as antitumor,antioxidant,anti-inflam-matory,and prebiotic properties.Moreover,both laminarin and laminarin oligosaccharides can be considered as ideal substrates for bioethanol production because they are composed of abundant glucose residues.Therefore,brown algae-derived laminarin and lami-narin oligosaccharides have various potential applications in the food,medicine,cosmetics,and bioenergy fields.This paper reviews the preparation methods of laminarin and laminarin oligosaccharides,as well as their biological activities and potential applications.展开更多
基金supported by the National Natural Science Foundation of China (No. 30771646)Shandong Province Independent Innovation Project with the title of ‘Industrialization development of several special seaweeds biological products using integrated technologies’
文摘In order to determine the role of alginate-derived oligosaccharides (ADO) in drought stress resistance of tomato (Ly-copersicon esculentum Miller) seedlings, the leaves were exposed to different concentrations of ADO (0.05%, 0.10%, 0.20%, 0.30% and 0.50%) after drought stress was simulated by exposing the roots to 0.6 molL-1 PEG-6000 solution for 6 h. Changes in biomass, electrolyte leakage and malondialdehyde (MDA), free proline, total soluble sugars (TSS) and abscisic acid (ABA), the enzyme activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) were measured to investigate the effects of ADO treatment. The results showed that the treatment with an ADO concentration of 0.20% exhibited the highest performance of drought stress resistance in the tomato seedlings by decreasing the electrolyte leakage and the concentration of MDA, increasing the contents of free proline, TSS and ABA, and increasing the activities of CAT, SOD, POD and PAL after treatment with ADO. It is suggested that changes in electrolyte leakage, MDA, osmotic solutes, ABA, anti-oxidative enzyme and PAL activities were responsible for the increased drought stress resistance in tomato seedlings. To our best knowledge, this is the first report of the effect of ADO treatment on enhancing the drought stress resistance of tomato seedlings.
基金supported by Localization of oxygen radicals and enzymes in bivalve haemocytes to Jing Liu(20230058,6602423063).
文摘Background:Polysaccharides have various biological activities;the complexation of polysaccharides with trace element ions can produce synergistic effects,improving the original biological activities of sugars and trace elements.Methods:The preparation process of chitosan oligosaccharide selenium(COSSe)was optimized by the response surface method,followed by a detailed analysis of the resultant compound’s characteristics.The anti-cancer activity of COSSe was studied using the human ovarian cancer cell line SKOV3 as a cell model.Results:The prepared COSSe response surface was well predicted,indicating successful chitosan oligosaccharide binding with selenium.Response surface method analyses identified the optimal synthesis conditions for COSSe:the reaction time of 5.08 h,the reaction temperature of 71.8°C,and mass ratio(Na2SeO3:chitosan oligosaccharide)of 1.02.Under the optimal conditions,the final product,the selenium content,reached 1.302%.The results of cell experiments showed that COSSe significantly inhibited SKOV3 proliferation in a concentration-dependent manner.RNA-seq results showed that chitosan oligosaccharide and COSSe significantly modulated the expression of genes’DNA metabolic processes and cell cycle in SKOV3 cells.Gene enrichment analysis showed the inhibition of the cell cycle,and the results of flow cytometry showed that SKOV3 cells increased in the S phase and decreased in the G2/M phase,with a noted suppression in the protein expression of cyclin-dependent kinase 2(CDK2)and cyclin A1(CCNA1).Conclusion:COSSe has a stronger effect than chitosan oligosaccharide,leading to the arrest of the cell cycle in the S phase.Thus,COSSe may be an effective candidate for the treatment of ovarian cancer.
文摘The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging.
基金supported by Shandong Province Key R&D Program,China(Major Technological Innovation Project)(Grant No.:2021CXGC010501)Young Elite Scientists Sponsorship Program by China Association of Chinese Medicine,China(Grant No.:CACM-2023-QNRC1-02)+8 种基金the National Natural Science Foundation of China(Grant Nos.:22107059,22007060,82302743)the Natural Science Foundation of Shandong Province,China(Grant Nos.:ZR2022QH304,ZR2021QH057,ZR2020QB166)the Program for Youth Innovation Technology in Colleges and Universities of Shandong Province of China(Grant No.:2021KJ035)Taishan Scholars Program,China(Grant Nos.:TSQN202211221,TSPD20181218)Shandong Science Fund for Excellent Young Scholars,China(Grant No.:ZR2022YQ66)Shandong Province Traditional Chinese Medicine Science and Technology Project,China(Grant No.:Q-2023059)Shenzhen Basic Research Project,China(Grant No.:JCYJ20190809160209449)the General Project of Shandong Natural Science Foundation,China(Grant No.:ZR2021MH341)Jinan Innovation Team Project of Colleges and Universities,China(Grant No.:2021GXRC072).
文摘Unlike chemosynthetic drugs designed for specific molecular and disease targets,active small-molecule natural products typically have a wide range of bioactivities and multiple targets,necessitating extensive screening and development.To address this issue,we propose a strategy for the direct in situ microdynamic examination of potential drug candidates to rapidly identify their effects and mechanisms of action.As a proof-of-concept,we investigated the behavior of mussel oligosaccharide(MOS-1)by tracking the subcellular dynamics of fluorescently labeled MOS-1 in cultured cells.We recorded the entire dynamic process of the localization of fluorescein isothiocyanate(FITC)-MOS-1 to the lysosomes and visualized the distribution of the drug within the cell.Remarkably,lysosomes containing FITC-MOS-1 actively recruited lipid droplets,leading to fusion events and increased cellular lipid consumption.These drug behaviors confirmed MOS-1 is a candidate for the treatment of lipid-related diseases.Furthermore,in a high-fat HepG2 cell model and in high-fat diet-fed apolipoprotein E(ApoE)^(-/-)mice,MOS-1 significantly promoted triglyceride degradation,reduced lipid droplet accumulation,lowered serum triglyceride levels,and mitigated liver damage and steatosis.Overall,our work supports the prioritization of in situ visual monitoring of drug location and distribution in subcellular compartments during the drug development phase,as this methodology contributes to the rapid identification of drug indications.Collectively,this methodology is significant for the screening and development of selective small-molecule drugs,and is expected to expedite the identification of candidate molecules with medicinal effects.
基金the Key Research and Development Program of Yunnan Province(No.202202AE090023)Key Research and Development Program of Guangdong Province(No.2022B0202040002+8 种基金2022B0202050001)the Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food,Ministry of Agriculturethe Heyuan Branch,Guangdong Laboratory for Lingnan Modern Agriculture Project(No.DT20220026)Talent Introduction Program of Guangdong Academy of Agricultural Sciences(No.R2022YJ-YB3004)the Basic and Applied Basic Research Project of Guangdong Province(No.2022A15151102272023A1515012386)the Science and Technology Planning Project of Guangzhou(No.2023A04J0828)the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams(No.202109TD)the Special Fund Project for Teachers’Scientific and Technological Achievements Transformation in Shunde Innovation Park,National University Science Park,South China University of Technology(No.KJYS2021KZ05)for their financial support。
文摘Two oligosaccharide fractions(MLO 2-1 and 2-2)were purified from enzymatic hydrolysate of mulberry leaf polysaccharide.The results of simulated digestion showed that MLO 2-2 was a digestible oligosaccharide,which could be degraded by human digestive juice;while MLO 2-1 possessed the non-digestible property in the upper gastrointestinal tract and performed the function by regulating the gut microbiota.Hence,MLO 2-1 was selected for the further analysis.The structure of MLO 2-1 was elucidated as follow:α-T-Glcp-(1→3)-β-Glcp-(1→5)-α-Araf-(1→5)-α-Araf-1→5)-α-Araf-(1→3)-α-(2-OAc)-Glcp-1.The in vitro fecal fermentation results showed that MLO 2-1 could modulate the composition of gut microbiota.Meanwhile,MLO 2-1 was effectively metabolized by fecal bacteria to produce lactate and short chain fatty acids,especially acetate and butyrate.The specific metabolic pathways of MLO 2-1 by gut microbiota were further illuminated.Gut microbiota analysis revealed that MLO 2-1 selectively promoted the growth of Ligilactobacillus murinus,a commensal bacterium presented a reduced level in T2DM mice.Animal experiments indicated that MLO 2-1 and L.murinus exhibited hypoglycemic activities.These results demonstrated that MLO 2-1 might alleviate T2DM by selectively accelerating the proliferation of L.murinus.
基金This research was funded and supported by the National Natural Science Foundation of China(Grant Number 32001443)Zhengzhou Major Science and Technology Innovation Project of Henan Province of China(Grant Number 2020CXZX0085)Science and Technology Inovation Team of Henan Academy of Agricultural Sciences(Grant Number 2024TD2).
文摘Alginate oligosaccharides(AOS)enhance drought resistance in wheat(Triticum aestivum L.),but the definite mechanisms remain largely unknown.The physiological and transcriptome responses of wheat seedlings treated with AOS were analyzed under drought stress simulated with polyethylene glycol-6000.The results showed that AOS promoted the growth of wheat seedlings and reduced oxidative damage by improving peroxidase and superoxide dismutase activities under drought stress.A total of 10,064 and 15,208 differentially expressed unigenes(DEGs)obtained from the AOS treatment and control samples at 24 and 72 h after dehydration,respectively,were mainly enriched in the biosynthesis of secondary metabolites(phenylpropanoid biosynthesis,flavonoid biosynthesis),carbohydrate metabolism(starch and sucrose metabolism,carbon fixation in photosynthetic organisms),lipid metabolism(fatty acid elongation,biosynthesis of unsaturated fatty acids,alpha-linolenic acid metabolism,cutin,suberine and wax biosynthesis),and signaling transduction pathways.The up-regulated genes were related to,for example,chlorophyll a-b binding protein,amylosynthease,phosphotransferase,peroxidase,phenylalanine ammonia lyase,flavone synthase,glutathione synthetase.Signaling molecules(including MAPK,plant hormones,H_(2)O_(2) and calcium)and transcription factors(mainly including NAC,MYB,MYB-related,WRKY,bZIP family members)were involved in the AOS-induced wheat drought resistance.The results obtained in this study help underpin the mechanisms of wheat drought resistance improved by AOS,and provides a theoretical basis for the application of AOS as an environmentally sustainable biological method to improve drought resistance in agriculture.
基金Supported by National"863"Technology Plan Key Projects-Key Techniques for Utilization of Polar Microbial Resources(2007AA091905)~~
文摘[Objective] The induced disease resistance of Antarctic bacteria B-3 extracellular oligosaccharide on cucumber was studied.[Method] Taking the cucumber seedlings as experimental materials,the molecular weight,monosaccharide composition of Antarctic bacteria B-3 extracellular oligosaccharide were studied,its induced effect on the defense enzyme in cucumber leaves and the induced resistance against powdery mildew were also investigated.[Result] Through gel permeation chromatography,the molecular weight of B-3 oligosaccharides was determined to be 2 112 Da;B-3 oligosaccharides was composed by two monosaccharides including of mannose and glucose.The activities of chinitase,β-1,3-glucanse,phenylanine,ammonialyse(PAL),superoxide dismutase(SOD),and peroxidase(POD)in cucumber seedlings all increased compared with control when 0.3%,0.5% and 0.8% B-3 extracellular oligosaccharide were sprayed on the seedlings of cucumber for different times,respectively,which had the similar induction effect with 0.5% chitosan;at the same time,0.5% oligosaccharides could significantly reduce the disease index of cucumber powdery mildew,the control effect reached 24.49%.[Conclusion] B-3 oligosaccharides is expected to be developed as a new type of resistance elicitor.
文摘The oligosaccharide elicitor from the mycelial wall of an endophytic Colletotrichum sp. B501 promoted the production of artemisinin in Artemisia annua L. hairy root culture. When hairy roots of 22-day-old cultures (later growth phase) were exposed to the elicitor (20 mg/L) for 4 d, the maximum content of artemisinin reached 1.15 mg/g, a 64.29% increment over the control. The electron X-ray microanalysis disclosed the rapid accumulation of Ca 2+ in the elicited cortical cells of hairy root. The electronic microscope observation revealed the high electron density area in vacuole of elicited cells. During the first day of elicitation the peroxidase activity of hairy roots was improved sharply. Some cellular morphological changes including cell shrinkage, condensation of cytoplasm and nuclear fragmentation, coincident with the appearance of DNA ladders, were observed after the third day of elicitation. It was suggested that the oligosaccharide elicitor triggered the programmed cell death, which may provide the substance or chemical signal for artemisinin biosynthesis.
文摘Taxol production of Taxus chinensis (Pilger) Rehd. var. mairei (Lemee et Lévl.) Cheng et L. K. Fu induced by oligosaccharide from Fusarium oxysporum f. vasinfectum (Atkinson) Snyder et Hansen was studied in suspension cultures, and it was found that oligosaccharide triggered cell apoptosis. Under transmission electron microscope the following morphological changes were observed: cell shrinkage, condensation of cytoplasm, nuclear fragmentation, and the increase of high electron density bodies in vacuole in great quantity. In oligosaccharide_treated cells, agarose gel electrophoresis revealed that DNA was digested into oligonucleosomal fragments that were times of 200 bp appearing as DNA ladders. Control cells were in normal physiological state, they were intact, abundant in organelle and with integral nucleus DNA, and the rate of taxol biosynthesis in these cells was very low. After the oligosaccharide to the culture system, the defense system of cells was elicited and the secondary metabolism was strengthened, i.e. phenolics were accumulated in the medium, the activity of polyphenol oxidase (PPO) was increased quickly and secondary wall of cells was thickened. The activity of L _phenylalanine ammonia lyase (PAL), the critical enzyme of the phenylpropanoid pathway, was increased promptly 1 h after elicitation. The rate of taxol production was improved sharply and the maximal taxol concentration at 72 h was six times that of control. Appearance of cell apoptosis was accompanied with the highest concentration of taxol in suspension cultures.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest(201403047)
文摘Background: Alginate oligosaccharide(AOS), produced from alginate by alginate lyase-mediated depolymerisation, is a potential substitute for antibiotics and possesses growth-enhancing effects. Nevertheless, the mechanisms by which AOS regulates porcine growth remain to be elucidated. Therefore, we investigated the AOS-mediated changes in the growth performance of weaned pigs by determining the intestinal morphology, barrier function,as well as epithelium apoptosis.Methods: Twenty-four weaned pigs were distributed into two groups(n = 12) and received either a basal diet(control group) or the same diet supplemented with 100 mg/kg AOS. On d 15, D-xylose(0.1 g/kg body weight)was orally administrated to eight randomly selected pigs per treatment, and their serum and intestinal mucosa samples were collected 1 h later.Results: Our results showed that inclusion of AOS in the diet for 2 wk increased(P < 0.05) the average daily body weight gain in weaned pigs. Notably, AOS supplementation ameliorated the intestinal morphology and barrier function, as suggested by the enhanced(P < 0.05) intestinal villus height, secretory immunoglobulin A content and goblet cell counts. Compared to the control group, AOS ingestion both decreased(P < 0.05) the total apoptotic percentage and increased(P < 0.05) the proportion of S phase in the intestinal epithelial cells. Furthermore, AOS not only up-regulated(P < 0.05) the B-cell lymphoma-2(BCL2) transcriptional level but also down-regulated(P < 0.05) the B-cell lymphoma-2-associated X protein(BAX), cysteinyl aspartate-specific proteinase-3(caspase-3) and caspase-9 transcriptional levels in the small intestine.Conclusions: In summary, this study provides evidence that supplemental AOS beneficially affects the growth performance of weaned pigs, which may result from the improved intestinal morphology and barrier function,as well as the inhibited enterocyte death, through reducing apoptosis via mitochondria-dependent apoptosis.
基金Supported by the Natural Science Foundation of Fujian Province(No.2011J05123)Scientific and Technological Innovation Team Support Plan of Institution of Higher Learning in Fujian Province([2012]03)the Scientific and Technological Innovation Team Support Plan of Fujian Agriculture and Forestry University(cxtd12009)
文摘In order to study the structure of lotus (Nelumbo nucifera Gaertn) seed oligosaccharides and their effect on the proliferation ofBifidobacterium adolescentis, we extracted the oligosaccharides from seeds collected from Jianning County, China. We preliminarily characterized the groups, molecular weights, molecular formulae, component monosaccharides and glycosidic bonds using mass spectrometry (MS) and nuclear magnetic resonance (NMR) after isolation and purification. The lotus seed oligosaccharides contained glycosidic bonds Manp-(1→), Galp-(1→), α(1→6)-Glup and α(1→6)-Manp; and mannose was the chief component monosaccharide. NMR analyses showed that ~t-glycosidic bonds and pyranoid rings were predominant in the oligosaccharides. The MS analyses showed that lotus seed oligosaccharides consisted of three oligosaccharides of different polymerization degree, with relative molecular weights of 342, 504 and 666 Da, and corresponding molecular formulae C12H22O11, C18H32O16 and C24H42O21. Research on the effect of lotus seed oligosaccharides on the proliferation orB. adolescentis showed that they effectively promoted the production of acetic, propionic and butyric acids by B. adolescentis through fermentation, and their effect was stronger than that of fructo-, xylo- and isomalto-oligosaccharides. Lotus seed oligosaccharides have potential as a new functional probiotic and lotus seeds should be further explored and utilized as a source of oligosaccharides.
基金funded by the National Basic Research Program of China (973 Program,2004CB117500)
文摘Microbiota in the gastrointestinal tract (GIT) of piglets during weaning transition can experience a sharp change which could result in growth reduction and diarrhea of weaned piglets. Dietary manipulations can play an important role in attenuating such changes caused by weaning stress. Therefore, ileal and colonic contents of weaned piglets were used as inocula, mannan oligosaccharide (MOS) or sugar beet pulp (SBP) was supplied as single energy sources to investigate effects of MOS or SBP on the shifts of gastro-intestinal microflora and lactobacilli populations. The universal bacteria- and lactobacilli-specific PCR/denaturing gradient gel electrophoresis (DGGE), cloning and sequencing techniques were used. DGGE profiles of the universal bacteria showed that great changes were found in the position, numbers and intensity of dominant bands after fermentation. The similarity of bacterial community between ileum and colon was increased to 85-97% by MOS or SBP treatment after fermentation from the similarity with 20% before fermentation. MOS treatment significantly increased the bacterial diversity and band number in both ileal and colonic fermentation (P〈0.05). SBP treatment significantly increased the bacterial diversity and band number in colon (P〈0.05). It implies that some species were enriched by the addition of MOS or SBP to increase the similarity and diversity of bacterial community in weaned piglets. Five specific bands appearing in MOS or SBP treatment group after fermentation were cloned and sequenced, the changes of species related to Prevotella and Ruminococcus were observed. Two bands related to uncultured bacterium with 98% similarity were detected by MOS or SBP treatment. However, there were no effects on the similarity, diversity index and lactobacilli species revealed by MOS or SBP treatment. These results imply that MOS or SBP could have beneficial effects on the weaning piglets by stablizing microbiota in the GIT microflora.
文摘One hundred and forty-four Avin broilers (1 d of age) were randomly divided into six groups, with three replicates of eight birds each to study on the effects of different oligosaccharides on performance and availability of nutrients in broilers. The control group(Group I)was fed with corn-soybean meal as basal diet, and the trial groups (Group II, III, IV,V and VI) were fed with basal diet plus 0.1% Manoligosaccharides(MOS), 0.3% Soybean-Oligosaccharides(SBOS), 0.3% Fructo-oligosaccharides(FOS), 0.3% α-Glucooligosaccharides(α-GOS) and 50 mg·L-1 Chlortetracycline(CTC), respectively. The results showed that the supplementation of oligosaccharides slightly improved daily gain and feed intake. SBOS supplementation improved, but MOS and α-GOS significantly decreased availability of energy. Oligosaccharides supplementation improved availability of energy, phosphorus, calcium, magnesium and iron, and significantly increased cholesterol content of fecal, and did not affect on availability of protein and cholesterol contents in serum and muscle. Availability of phosphorus of broilers fed with FOS was much higher than that with α-GOS. SBOS supplementation remarkably increased availability of iron.
基金the National Key R&D Program of China (2016YFD0500501)the National Natural Science Foundation of China (31772641)the Basic Science and Research Funding of Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, China (2018-YWF-YB-11)。
文摘Alginate oligosaccharides(AOS), belonging to the class of functional marine oligosaccharides, are low-molecular polymers linked by β-1,4-mannuronic acid(M) and α-1,4-guluronic acid(G), which could be classically obtained by enzymatic hydrolysis of alginate. With low viscosity and good water solubility, as well as anti-oxidant, immune regulation, anti-bacterial and antiinflammatory activities, AOS have been widely used in medical science and functional food, green agriculture and other fields. As new bio-feed additives, AOS have broad potential applications in animal husbandry. In this review, the sources of alginate, chemical structure and preparation methods of AOS, and their biological activities and application in livestock and poultry are summarized. We expect this review could contribute to lay a foundation of application and further research for AOS in livestock and poultry.
基金supported by the National Natural Science Foundation of China (No. 91129706)NSFC-Shandong Joint Fund (Nos. U1406402 and U1606403)+2 种基金National Key Technology R & D Program of the Ministry of Science and Technology (No. 2013BAB01B02)Taishan Scholar Special Fund of Shandong Province in China (G. Y. and L. Z.)the Major Science and Technology Projects of Shandong Province (No. 2015 ZDJS04002)
文摘Fibroblast growth factor 19(FGF19) functions as a hormone by affecting glucose metabolism. FGF19 improves glucose tolerance when overexpressed in mice with impaired glucose tolerance or diabetes. A functional cellular FGF19 receptor consists of FGF receptor(FGFR) and glycosaminoglycan complexed with either α Klotho or β Klotho. Interestingly, in mice with diet-induced diabetes, a single injection of FGF1 is enough to restore blood sugar levels to a healthy range. FGF1 binds heparin with high affinity whereas FGF19 does not, indicating that polysaccharides other than heparin might enhance FGF19/FGFR signaling. Using a FGFs/FGFR1 c signaling-dependent Ba F3 cell proliferation assay, we discovered that polyguluronate sulfate(PGS) and its oligosaccharides, PGS12 and PGS25, but not polyguluronate(PG), a natural marine polysaccharide, enhanced FGF19/FGFR1 c signaling better than that of heparin based on ~3H-thymidine incorporation. Interestingly, PGS6, PGS8, PGS10, PGS12, PGS25, and PGS, but not PG, had comparable FGF1/FGFR1 c signal-stimulating activity compared to that of heparin. These results indicated that PGS and its oligosaccharides were excellent FGF1/FGFR1 c and FGF19/FGFR1 c signaling enhancers at cellular level. Since the inexpensive PGS and PGS oligosaccharides can be absorbed through oral route, these seaweed-derived compounds merit further investigation as novel agents for the treatment of type 2 diabetes through enhancing FGF1/FGFR1 c and FGF19/FGFR1 c signaling in future.
文摘Nucleotides (NT) and human milk oligosaccharides (HMO) individually affect epithelial cell growth, but their combined effects had not been studied. Herein, the impact of NT and HMO on cell proliferation, apoptosis, necrosis and cell cycle in the fetal epithelial cell line (FHs-74 Int) was determined. Cells were incubated with media containing 2.5% FBS and no epidermal growth factor (Control);fucosyllactose (FL) mix [85% 2’FL/15% 3’FL], sialyllactose (SL) mix [40% 6’SL/10% 3’SL/50% sialic acid (SA)] or LNnT at 125, 250, 500 or 1000 μg/mL with and without 250 μg/mL NT (43% CMP, 18.5% UMP, 16.4% AMP, and 22.0% GMP) for 24 or 72 h. NT alone significantly increased proliferation, but did not affect cell cycle or apoptosis/necrosis. All HMO treatments at 1000 μg/mL significantly decreased proliferation and some were also inhibitory at 250 or 500 μg/mL. When NT and HMO were simultaneously added, NT ameliorated the anti-proliferative effect of HMO. FL significantly increased cells in S phase and SL and LNnT treatments significantly increased cells in G2/M and S phases, which concomitantly decreased cells in G0/G1. HMO with NT significantly decreased the percent of cells in the G2/M phase compared to HMO alone. Higher HMO doses significantly increased the percentage of apoptotic and necrotic cells compared to control. In conclusion, HMO reduced cell proliferation and this effect is partially ameliorated by NT. It appears that HMO initially induced apoptosis/necrosis, which was later evidenced by G2/M cell cycle arrest and decreased proliferation.
文摘Human milk oligosaccharides (HMO) contribute to innate immunity by enhancing growth of beneficial bacteria, epithelial cell maturation and mucosal barrier integrity. They have immunomodulatory effects and can block pathogen binding to host cell surface glycans or receptors. We investigated the effects of 2’-fucosyllactose (2’FL), 6’-sialyllactose (6’SL), 3’-sialyllactose (3’SL) and lacto-N-neoTetraose (LNnT) on human respiratory epithelial cell lines or peripheral blood mononuclear cells (PBMCs) following respiratory viral infectionin vitro. Expression of cytokines and viral load were monitored in infected cells. These biomarkers of innate immunity were selected since viral load and cytokine levels (IP-10, MIP-1α, IL-6, IL-8, TNF-α) have been correlated with disease severity in respiratory syncytial virus (RSV) and influenza (IAV) virus infectionin vivo. 2’FL significantly decreased RSV viral load and cytokines associated with disease severity (IL-6, IL-8, MIP-1α) and inflammation (TNF-α, MCP-1) in airway epithelial cells. LNnT and 6’SL significantly decreased IAV viral load in airway epithelial cells. 6’SL dose-dependently down-regulated IP-10 and TNF-α in RSV infected PBMCs. HMO at or below levels found in breast milk enhance innate immunity to respiratory viruses in vitro and may interact directly with cells to modulate biomarkers of innate immunity.
基金supported by the National Key R&D Program of China(Grant No.2018YFD0401303)the National Natural Science Foundation of China(Grant Nos.31722043,31930086)Youth Innovation Promotion Association,CAS(Y201919)。
文摘Kiwifruit is an extremely perishable fruit;postharvest disease and senescence during storage can reduce the fruit quality,resulting in economic loss.Considerable research effort has focused on identifying safe and cost-effective ways to preserve fresh kiwifruit.To this end,the present study investigated the effects of alginate oligosaccharide(AOS)soaking treatment on postharvest quality and disease in the‘Bruno’variety of kiwifruit.The involved physiological mechanisms were further explored.The results showed that AOS did not inhibit the growth of Botrytis cinerea in vitro,the causal agent of gray mold in kiwifruit,but reduced the incidence of gray mold and diameter of lesions of kiwifruit during storage.Kiwifruit treated with 50 mg·L-1 AOS showed a higher degree of firmness and lower soluble solid content than control fruit treated with distilled water.Moreover,AOS treatment inhibited the activity of polygalacturonase and pectinesterase,while enhancing the activity of polyphenoloxidase,l-phenylalanine ammonia lyase andβ-1,3-glucanase related to pathogen defense,and also improved total antioxidant capacity determined by the DPPH,FRAP,and ABTS methods in kiwifruit.These results indicate that 50 mg·L-1 AOS can confer disease resistance in kiwifruit during storage.
基金financially supported by Sichuan Science and Technology Program[2021YFSY0035]Heilongjiang Touyan Team[HITTY-20190034].
文摘Inflammatory bowel disease(IBD)is characterized by recurrent attacks and long courses,and the number of patients has expanded rapidly year by year.Additionally,current conventional strategies exist serious adverse effects.In this case,it is an urgent issue to find out an effective and safe treatment.Functional oligosaccharides possess safe and excellent physiological activities,and have attracted enormous attention due to their great therapeutic potential for IBD.This review emphasizes the attenuating effects of distinct functional oligosaccharides on IBD and their structure,and summarizes the main mechanisms from the aspects of regulating intestinal fl ora structure,repairing intestinal barrier,modulating immune function and mediating related signaling pathways in order to reveal the relationship between functional oligosaccharides,immune regulation,intestinal epithelial cells,gut fl ora and IBD treatment.Oligosaccharides possess excellent protective effects on IBD,and can be considered as safe and functional ingredients in the health food and pharmaceutical industry.
基金This work was supported by the National Natural Science Foundation of China(No.31922072)National Key Research and Development Program of China(Nos.2019YFD0901902 and 2019YFD0901904)+1 种基金Taishan Scholar Project of Shandong Province(No.tsqn201812020)the Fundamental Research Funds for the Central Universities(No.201941002).
文摘Brown algae is one of the three major types of marine algae and includes approximately 2000 species.It is widely dis-tributed in various seas around the world.Brown algae contain a plethora of active substances,such as polysaccharides,polyphe-nols,omega-3 fatty acids,and carotenoids.Laminarin,a type of storage carbohydrate found abundantly in brown algae,is mainly formed by glucose monomers linked byβ-1,3-glucosidic bonds and partialβ-1,6-glucosidic bonds.Laminarin and laminarin oligo-saccharides,which contain 2-10 saccharide units,have extensive biological activities,such as antitumor,antioxidant,anti-inflam-matory,and prebiotic properties.Moreover,both laminarin and laminarin oligosaccharides can be considered as ideal substrates for bioethanol production because they are composed of abundant glucose residues.Therefore,brown algae-derived laminarin and lami-narin oligosaccharides have various potential applications in the food,medicine,cosmetics,and bioenergy fields.This paper reviews the preparation methods of laminarin and laminarin oligosaccharides,as well as their biological activities and potential applications.