This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to del...This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.展开更多
The effects of stage numbers on power dissipation of pipeline analog-to-digital converter (ADC) are studied and a novel design method aiming for power optimization is presented. In this method, a minimum comparator ...The effects of stage numbers on power dissipation of pipeline analog-to-digital converter (ADC) are studied and a novel design method aiming for power optimization is presented. In this method, a minimum comparator number algorithm (MCNA) is first introduced, and then the optimum distribution of resolutions through pipeline ADC stages is deduced by MCNA. Based on the optimum stage-resolution distribution, an optimization method is established, which examines the precise function between ADC power and stage resolutions with a parameter of power ratio (Rp). For 10-bit pipeline ADC with scaling down technology, the simulation results by using MATLAB CAD tools show that an eight-stage topology with 1-bit RSD correction achieves the power optimization indicated by the power reduction ratio.展开更多
基金supported by Northern Border University,Arar,Kingdom of Saudi Arabia,through the Project Number“NBU-FFR-2024-2248-03”.
文摘This study is trying to address the critical need for efficient routing in Mobile Ad Hoc Networks(MANETs)from dynamic topologies that pose great challenges because of the mobility of nodes.Themain objective was to delve into and refine the application of the Dijkstra’s algorithm in this context,a method conventionally esteemed for its efficiency in static networks.Thus,this paper has carried out a comparative theoretical analysis with the Bellman-Ford algorithm,considering adaptation to the dynamic network conditions that are typical for MANETs.This paper has shown through detailed algorithmic analysis that Dijkstra’s algorithm,when adapted for dynamic updates,yields a very workable solution to the problem of real-time routing in MANETs.The results indicate that with these changes,Dijkstra’s algorithm performs much better computationally and 30%better in routing optimization than Bellman-Ford when working with configurations of sparse networks.The theoretical framework adapted,with the adaptation of the Dijkstra’s algorithm for dynamically changing network topologies,is novel in this work and quite different from any traditional application.The adaptation should offer more efficient routing and less computational overhead,most apt in the limited resource environment of MANETs.Thus,from these findings,one may derive a conclusion that the proposed version of Dijkstra’s algorithm is the best and most feasible choice of the routing protocol for MANETs given all pertinent key performance and resource consumption indicators and further that the proposed method offers a marked improvement over traditional methods.This paper,therefore,operationalizes the theoretical model into practical scenarios and also further research with empirical simulations to understand more about its operational effectiveness.
基金Supported by the National Natural Science Foundation of China (No. 60072004)
文摘The effects of stage numbers on power dissipation of pipeline analog-to-digital converter (ADC) are studied and a novel design method aiming for power optimization is presented. In this method, a minimum comparator number algorithm (MCNA) is first introduced, and then the optimum distribution of resolutions through pipeline ADC stages is deduced by MCNA. Based on the optimum stage-resolution distribution, an optimization method is established, which examines the precise function between ADC power and stage resolutions with a parameter of power ratio (Rp). For 10-bit pipeline ADC with scaling down technology, the simulation results by using MATLAB CAD tools show that an eight-stage topology with 1-bit RSD correction achieves the power optimization indicated by the power reduction ratio.