To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was ...To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.展开更多
In [1] the unconstrained minimization problem was considered and presented an algorithm without derivative. But the terminative conditions and convergence proof of the algorithm were not given. In this paper, we prese...In [1] the unconstrained minimization problem was considered and presented an algorithm without derivative. But the terminative conditions and convergence proof of the algorithm were not given. In this paper, we present a revised algorithm and prove its convergence.展开更多
A new algorithm for unconstrained optimization is developed, by using the product form of the OCSSR1 update. The implementation is especially useful when gradient information is estimated by difference formulae. Preli...A new algorithm for unconstrained optimization is developed, by using the product form of the OCSSR1 update. The implementation is especially useful when gradient information is estimated by difference formulae. Preliminary tests show that new algorithm can perform well.展开更多
基金Project(61273055) supported by the National Natural Science Foundation of ChinaProject(CX2010B012) supported by Hunan Provincial Innovation Foundation for Postgraduate Students, ChinaProject(B100302) supported by Innovation Foundation for Postgraduate Students of National University of Defense Technology, China
文摘To evaluate the performance of real time kinematic (RTK) network algorithms without applying actual measurements, a new method called geometric precision evaluation methodology (GPEM) based on covariance analysis was presented. Three types of multiple reference station interpolation algorithms, including partial derivation algorithm (PDA), linear interpolation algorithms (LIA) and least squares condition (LSC) were discussed and analyzed. The geometric dilution of precision (GDOP) was defined to describe the influence of the network geometry on the interpolation precision, and the different GDOP expressions of above-mentioned algorithms were deduced. In order to compare geometric precision characteristics among different multiple reference station network algorithms, a simulation was conducted, and the GDOP contours of these algorithms were enumerated. Finally, to confirm the validation of GPEM, an experiment was conducted using data from Unite State Continuously Operating Reference Stations (US-CORS), and the precision performances were calculated according to the real test data and GPEM, respectively. The results show that GPEM generates very accurate estimation of the performance compared to the real data test.
文摘In [1] the unconstrained minimization problem was considered and presented an algorithm without derivative. But the terminative conditions and convergence proof of the algorithm were not given. In this paper, we present a revised algorithm and prove its convergence.
文摘A new algorithm for unconstrained optimization is developed, by using the product form of the OCSSR1 update. The implementation is especially useful when gradient information is estimated by difference formulae. Preliminary tests show that new algorithm can perform well.