期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
BFS-SVM Classifier for QoS and Resource Allocation in Cloud Environment
1
作者 A.Richard William J.Senthilkumar +1 位作者 Y.Suresh V.Mohanraj 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期777-790,共14页
In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocatio... In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results. 展开更多
关键词 Bat algorithm with feature selection(BFS) support vector machine(SVM) multiple-input multiple output(MIMO) quality of service(QoS) CLASSIFIER cloud computing
下载PDF
森林优化特征选择算法的增强与扩展 被引量:9
2
作者 刘兆赓 李占山 +2 位作者 王丽 王涛 于海鸿 《软件学报》 EI CSCD 北大核心 2020年第5期1511-1524,共14页
特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林... 特征选择作为一种重要的数据预处理方法,不但能解决维数灾难问题,还能提高算法的泛化能力.各种各样的方法已被应用于解决特征选择问题,其中,基于演化计算的特征选择算法近年来获得了更多的关注并取得了一些成功.近期研究结果表明,森林优化特征选择算法具有更好的分类性能及维度缩减能力.然而,初始化阶段的随机性、全局播种阶段的人为参数设定,影响了该算法的准确率和维度缩减能力;同时,算法本身存在着高维数据处理能力不足的本质缺陷.从信息增益率的角度给出了一种初始化策略,在全局播种阶段,借用模拟退火控温函数的思想自动生成参数,并结合维度缩减率给出了适应度函数;同时,针对形成的优质森林采取贪心算法,形成一种特征选择算法EFSFOA(enhanced feature selection using forest optimization algorithm).此外,在面对高维数据的处理时,采用集成特征选择的方案形成了一个适用于EFSFOA的集成特征选择框架,使其能够有效处理高维数据特征选择问题.通过设计对比实验,验证了EFSFOA与FSFOA相比在分类准确率和维度缩减率上均有明显的提高,高维数据处理能力更是提高到了100 000维.将EFSFOA与近年来提出的比较高效的基于演化计算的特征选择方法进行对比,EFSFOA仍具有很强的竞争力. 展开更多
关键词 enhanced feature selection using forest optimization algorithm(EFSFOA) 高维 特征选择 演化计算
下载PDF
Apple leaf disease identification using genetic algorithm and correlation based feature selection method 被引量:17
3
作者 Zhang Chuanlei Zhang Shanwen +2 位作者 Yang Jucheng Shi Yancui Chen Jia 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第2期74-83,共10页
Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best tim... Apple leaf disease is one of the main factors to constrain the apple production and quality.It takes a long time to detect the diseases by using the traditional diagnostic approach,thus farmers often miss the best time to prevent and treat the diseases.Apple leaf disease recognition based on leaf image is an essential research topic in the field of computer vision,where the key task is to find an effective way to represent the diseased leaf images.In this research,based on image processing techniques and pattern recognition methods,an apple leaf disease recognition method was proposed.A color transformation structure for the input RGB(Red,Green and Blue)image was designed firstly and then RGB model was converted to HSI(Hue,Saturation and Intensity),YUV and gray models.The background was removed based on a specific threshold value,and then the disease spot image was segmented with region growing algorithm(RGA).Thirty-eight classifying features of color,texture and shape were extracted from each spot image.To reduce the dimensionality of the feature space and improve the accuracy of the apple leaf disease identification,the most valuable features were selected by combining genetic algorithm(GA)and correlation based feature selection(CFS).Finally,the diseases were recognized by SVM classifier.In the proposed method,the selected feature subset was globally optimum.The experimental results of more than 90%correct identification rate on the apple diseased leaf image database which contains 90 disease images for there kinds of apple leaf diseases,powdery mildew,mosaic and rust,demonstrate that the proposed method is feasible and effective. 展开更多
关键词 apple leaf disease diseased leaf recognition region growing algorithm(RGA) genetic algorithm and correlation based feature selection(GA-CFS)
原文传递
An Unsupervised Feature Selection Algorithm with Feature Ranking for Maximizing Performance of the Classifiers 被引量:2
4
作者 Danasingh Asir Antony Gnana Singh Subramanian Appavu Alias Balamurugan Epiphany Jebamalar Leavline 《International Journal of Automation and computing》 EI CSCD 2015年第5期511-517,共7页
Prediction plays a vital role in decision making. Correct prediction leads to right decision making to save the life, energy,efforts, money and time. The right decision prevents physical and material losses and it is ... Prediction plays a vital role in decision making. Correct prediction leads to right decision making to save the life, energy,efforts, money and time. The right decision prevents physical and material losses and it is practiced in all the fields including medical,finance, environmental studies, engineering and emerging technologies. Prediction is carried out by a model called classifier. The predictive accuracy of the classifier highly depends on the training datasets utilized for training the classifier. The irrelevant and redundant features of the training dataset reduce the accuracy of the classifier. Hence, the irrelevant and redundant features must be removed from the training dataset through the process known as feature selection. This paper proposes a feature selection algorithm namely unsupervised learning with ranking based feature selection(FSULR). It removes redundant features by clustering and eliminates irrelevant features by statistical measures to select the most significant features from the training dataset. The performance of this proposed algorithm is compared with the other seven feature selection algorithms by well known classifiers namely naive Bayes(NB),instance based(IB1) and tree based J48. Experimental results show that the proposed algorithm yields better prediction accuracy for classifiers. 展开更多
关键词 feature selection algorithm CLASSIFICATION CLUSTER
原文传递
A Novel Forgery Detection in Image Frames of the Videos Using Enhanced Convolutional Neural Network in Face Images 被引量:2
5
作者 S.Velliangiri J.Premalatha 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期625-645,共21页
Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kin... Different devices in the recent era generated a vast amount of digital video.Generally,it has been seen in recent years that people are forging the video to use it as proof of evidence in the court of justice.Many kinds of researches on forensic detection have been presented,and it provides less accuracy.This paper proposed a novel forgery detection technique in image frames of the videos using enhanced Convolutional Neural Network(CNN).In the initial stage,the input video is taken as of the dataset and then converts the videos into image frames.Next,perform pre-sampling using the Adaptive Rood Pattern Search(ARPS)algorithm intended for reducing the useless frames.In the next stage,perform preprocessing for enhancing the image frames.Then,face detection is done as of the image utilizing the Viola-Jones algorithm.Finally,the improved Crow Search Algorithm(ICSA)has been used to select the extorted features and inputted to the Enhanced Convolutional Neural Network(ECNN)classifier for detecting the forged image frames.The experimental outcome of the proposed system has achieved 97.21%accuracy compared to other existing methods. 展开更多
关键词 Adaptive Rood Pattern Search(ARPS) Improved Crow Search algorithm(ICSA) Enhanced Convolutional Neural Network(ECNN) Viola Jones algorithm Speeded Up Robust feature(SURF)
下载PDF
Positioning performance analysis of the time sum of arrival algorithm with error features 被引量:1
6
作者 宫峰勋 马艳秋 《Optoelectronics Letters》 EI 2018年第2期133-137,共5页
The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location ... The theoretical positioning accuracy of multilateration(MLAT) with the time difference of arrival(TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival(TSOA) algorithm from the root mean square error(RMSE) and geometric dilution of precision(GDOP) in additive white Gaussian noise(AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems. 展开更多
关键词 Positioning performance analysis of the time sum of arrival algorithm with error features
原文传递
A stall diagnosis method based on entropy feature identification in axial compressors
7
作者 Yang Liu Juan Du +3 位作者 Jichao Li Yang Xu Junqiang Zhu Chaoqun Nie 《International Journal of Mechanical System Dynamics》 2023年第1期73-84,共12页
A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally... A stall diagnosis method based on the entropy feature extraction algorithm is developed in axial compressors.The reliability of the proposed method is determined and a parametric sensitivity analysis is experimentally conducted for two different types of compressor stall diagnoses.A collection of time‐resolved pressure sensors is mounted circumferentially and along the chord direction to measure the dynamic pressure on the casing.Results show that the stall and prestall precursor embedded in the dynamic pressures are identified through nonlinear feature perturbation extraction using the entropy feature extraction algorithm.Further analysis demonstrates that the prestall precursor with the peak entropy value is related to the unsteady tip leakage flow for the spike‐type stall diagnosis.The modal wave inception with increasing amplitude is identified by the considerable increase of the entropy value.The flow field in the tip region indicates that the modal wave corresponds to the flow separation in the suction side of the rotor blade.The warning time is 100–300 rotor revolutions for both types of stall diagnoses,which is beneficial for stall control in different axial compressors.Moreover,a parametric study of the embedding dimension m,similar tolerance n,similar radius r,and data length N in the fuzzy entropy method is conducted to determine the optimal parameter setting for stall diagnosis.The stall warning based on the entropy feature extraction algorithm provides a new stall diagnosis approach in the axial compressor with different stall types.This stall warning can also be adopted as an online stability monitoring index when using the concept of active stall control. 展开更多
关键词 stall diagnosis entropy feature extraction algorithm fuzzy approximate entropy axial compressor
原文传递
Estimation of crowd density from UAVs images based on corner detection procedures and clustering analysis 被引量:1
8
作者 Ali Almagbile 《Geo-Spatial Information Science》 SCIE CSCD 2019年第1期23-34,共12页
With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings,crowd monitoring has taken a considerable attentions in many disciplines such as psychology,sociology,engine... With rapid developments in platforms and sensors technology in terms of digital cameras and video recordings,crowd monitoring has taken a considerable attentions in many disciplines such as psychology,sociology,engineering,and computer vision.This is due to the fact that,monitoring of the crowd is necessary to enhance safety and controllable movements to minimize the risk particularly in highly crowded incidents(e.g.sports).One of the platforms that have been extensively employed in crowd monitoring is unmanned aerial vehicles(UAVs),because UAVs have the capability to acquiring fast,low costs,high-resolution and real-time images over crowd areas.In addition,geo-referenced images can also be provided through integration of on-board positioning sensors(e.g.GPS/IMU)with vision sensors(digital cameras and laser scanner).In this paper,a new testing procedure based on feature from accelerated segment test(FAST)algorithms is introduced to detect the crowd features from UAV images taken from different camera orientations and positions.The proposed test started with converting a circle of 16 pixels surrounding the center pixel into a vector and sorting it in ascending/descending order.A single pixel which takes the ranking number 9(for FAST-9)or 12(for FAST-12)was then compared with the center pixel.Accuracy assessment in terms of completeness and correctness was used to assess the performance of the new testing procedure before and after filtering the crowd features.The results show that the proposed algorithms are able to extract crowd features from different UAV images.Overall,the values of Completeness range from 55 to 70%whereas the range of correctness values was 91 to 94%. 展开更多
关键词 Unmanned Aerial Vehicle(UAV) crowd density corner detection feature from Accelerated Segment Test(FAST)algorithm clustering analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部