Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirica...Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results. A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high.展开更多
The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is...The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is presented at the end of this paper. From the satisfied result, quick, convenient and practical new approach is developed to solve this kind of problems.展开更多
In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact infor...In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.展开更多
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear globa...At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.展开更多
A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of ...A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of the typhoon's center or intensity because the contrast of the received typhoon cloud image may be bad.Our aim is to extrude the typhoon's eye in the typhoon cloud image.A normalized arc-tangent transformation operation is designed to enhance global contrast of the typhoon cloud image.Differential evolution algorithm is used to choose the optimal nonlinear transform parameter.Finally,geodesic activity contour model is used to extract the typhoon's eye to verify the performance of the proposed method.Experimental results show that the proposed method can efficiently enhance the global contrast of the typhoon cloud image while greatly extruding the typhoon's eye.展开更多
A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear map...A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodieally in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimenslonal olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.展开更多
An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established ...An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.展开更多
In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm...In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.展开更多
In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynam...In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.展开更多
In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a c...In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a complete system (magnetic bearing, controller, and power amplifiers). The feasibility of using a neural network to control nonlinear magnetic bearing systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.展开更多
Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome ...Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome the disadvantage of thermo-gravimetric analyzer. The thermal decomposition behaviour of MSW was investigated using thermo-gravimetric ( TG ) analysis at rates of 4.8,6.6,8.4, 12.0 and 13. 2 K/min. The pyrolysis characteristics of MSW were also studied in different function districts. The pyrolysis of MSW is a complex reaction process and three main stages are found according to the results. The first stage represents the degradation of cellulose and hemicellulose, with the maximum degradation rate occuring at 150℃ -200 ℃: the second stage represents dehydrochlorination and depolymerization of intermediate products and the differential thermogravimetric ( DTG ) curves have shoulder peaks at about 300℃: the third stage is the decomposition of the residual big molecular organic substance and lignin at 400 ℃- 600 ℃. Within the range of given experimental conditions, the results of non-linear fitting algorithm and experiment are in agreement with each other and the correlation coefficients are over0. 99. The kinetic characteristics are concerned with the material component and heating rate. The activation energy of reaction decreases with the increase of heating rate.展开更多
In the research on spatial hearing and realization of virtual auditory space,it is important to effectively model the head-related transfer functions(HRTFs)or head-related impulse responses(HRIRs).In our study,we mana...In the research on spatial hearing and realization of virtual auditory space,it is important to effectively model the head-related transfer functions(HRTFs)or head-related impulse responses(HRIRs).In our study,we managed to carry out adaptive non-linear approximation in the field of wavelet transformation.The results show that the HRIRs’adaptive non-linear approximation model is a more effective data reduction model,is faster,and is 5 dB on average better than the traditional principal component analysis(PCA)(Karhunen-Loève transform)model based on relative mean square error(MSE)criterion.Furthermore,we also discussed the best bases’choice for the time-frequency representation of HRIRs,and the results show that local cosine bases are more propitious to HRIRs’adaptive approximation than wavelet and wavelet packet base.However,the improved effect of local cosine bases is not distinct.Here,for the sake of modeling the HRIRs more truthfully,we consider choosing optimal time-frequency atoms from redundant dictionary to decompose this kind of signals of HRIRs and achieve better results than all the previous models.展开更多
Most of the energy produced in the world is consumed by commercial and residential buildings.With the growth in the global economy and world demographics,this energy demand has become increasingly important.This has l...Most of the energy produced in the world is consumed by commercial and residential buildings.With the growth in the global economy and world demographics,this energy demand has become increasingly important.This has led to higher unit electricity prices,frequent stresses on the main electricity grid and carbon emissions due to inefficient energy management.This paper presents an energy-consumption management system based on time-shifting of loads according to the dynamic day-ahead electricity pricing.This simultaneously reduces the electricity bill and the peaks,while maintaining user comfort in terms of the operating waiting time of appliances.The proposed optimization problem is formulated mathematically in terms of multi-objective integer non-linear programming,which involves constraints and consumer preferences.For optimal scheduling,the management problem is solved using the hybridization of the particle swarm optimization algorithm and the branch-and-bound algorithm.Two techniques are proposed to manage the trade-off between the conflicting objectives.The first technique is the Pareto-optimal solutions classification using supervised learning methods.The second technique is called the lexicographic method.The simulations were performed based on residential building energy consumption,time-of-use pricing(TOU)and critical peak pricing(CPP).The algorithms were implemented in Python.The results of the current work show that the proposed approach is effective and can reduce the electricity bill and the peak-to-average ratio(PAR)by 28% and 49.32%,respectively,for the TOU tariff rate,and 48.91% and 47.87% for the CPP tariff rate by taking into account the consumer’s comfort level.展开更多
To obtain a high specific work output,the large pressure ratios across the turbine are required.This can be achieved using a supersonic turbine.When the fluid mass flow is low,the impulse kind of one or two stages sup...To obtain a high specific work output,the large pressure ratios across the turbine are required.This can be achieved using a supersonic turbine.When the fluid mass flow is low,the impulse kind of one or two stages supersonic turbine is employed.To prevent losses due to low blade aspect ratio and issues related to manufacturing and industrial problems,the turbine is used in partial admission conditions.Studies show that the turbine efficiency is highly dependent on the amount of partial admission coefficient.The turbine efficiency in full admission is high,but the use of partial admission lowers the additional losses.Therefore,there will be a degree of partial admission in which the turbine will have the highest efficiency.The aim of this work is to achieve the optimum partial admission for a special impulse turbine as a case study.Therefore,in the beginning,an appropriate model of losses is presented.Then,using a nonlinear design optimization code,the partial admission of an impulse supersonic turbine is optimized.This code is written using a genetic algorithm.Then,using three-dimensional numerical analysis,the optimal model will be selected.In the optimization problem,the turbine efficiency is the objective function.The amount of design parameters and constraints used in this process are ten and eight,respectively.After the optimization process,prototypes of designed and modified turbines are made and tested.Test results were compared and analyzed.The results showed that the turbine efficiency is improved between 2.5%and 3%depending on various operation conditions.展开更多
With the recent trends in urban agriculture and climate change,there is an emerging need for alternative plant culture techniques where dependence on soil can be eliminated.Hydroponic and aquaponic growth techniques h...With the recent trends in urban agriculture and climate change,there is an emerging need for alternative plant culture techniques where dependence on soil can be eliminated.Hydroponic and aquaponic growth techniques have proven to be viable alternatives,but the lack of efficient and optimal practices for irrigation and nutrient supply limits its applications on a large-scale commercial basis.The main purpose of this research was to develop statistical methods and Machine Learning algorithms to regulate nutrient concentrations in aquaponic irrigation water based on plant needs,for achieving optimal plant growth and promoting broader adoption of aquaponic culture on a commercial scale.One of the key challenges to developing these algorithms is the sparsity of data which requires the use of Bolstered error estimation approaches.In this paper,several linear and non-linear algorithms trained on relatively small datasets using Bolstered error estimation techniques were evaluated,for selecting the best method in making decisions regarding the regulation of nutrients in hydroponic environments.After repeated tests on the dataset,it was decided that Semi-Bolstered Resubstitution Error estimation technique works best in our case using Linear Support Vector Machine as the classifier with the value of penalty parameter set to one.A set of recommended rules have been prescribed as a Decision Support System,using the output of the Machine Learning algorithm,which have been tested against the results of the baseline model.Further,the positive impact of the recommended nutrient concentrationson plant growth in aquaponic environments has been elaborately discussed.展开更多
基金Project supported by the National Natural Science Foundation of China (No.40375019) the Tropical Marine and Meteorology Science Foundation (No.200609) the Jiangsu Key Laboratory of Meteorological Disaster Foundation (No.KLME0507)
文摘Aiming at the difficulty of accurately constructing the dynamic model of subtropical high, based on the potential height field time series over 500 hPa layer of T106 numerical forecast products, by using EOF(empirical orthogonal function) temporal-spatial separation technique, the disassembled EOF time coefficients series were regarded as dynamical model variables, and dynamic system retrieval idea as well as genetic algorithm were introduced to make dynamical model parameters optimization search, then, a reasonable non-linear dynamic model of EOF time-coefficients was established. By dynamic model integral and EOF temporal-spatial components assembly, a mid-/long-term forecast of subtropical high was carried out. The experimental results show that the forecast results of dynamic model are superior to that of general numerical model forecast results. A new modeling idea and forecast technique is presented for diagnosing and forecasting such complicated weathers as subtropical high.
文摘The non-linear inversion of rock mechanics parameters based on genetic algorithm is presented. The principIe and step of genetic algorithm is also given. A brief discussion of this method and an application example is presented at the end of this paper. From the satisfied result, quick, convenient and practical new approach is developed to solve this kind of problems.
文摘In this paper, an innovative Genetic Algorithms (GA)-based inexact non-linear programming (GAINLP) problem solving approach has been proposed for solving non-linear programming optimization problems with inexact information (inexact non-linear operation programming). GAINLP was developed based on a GA-based inexact quadratic solving method. The Genetic Algorithm Solver of the Global Optimization Toolbox (GASGOT) developed by MATLABTM was adopted as the implementation environment of this study. GAINLP was applied to a municipality solid waste management case. The results from different scenarios indicated that the proposed GA-based heuristic optimization approach was able to generate a solution for a complicated nonlinear problem, which also involved uncertainty.
基金supported by the National Natural Science Foundation of China(No.41374123)
文摘At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
基金supported by National Natural Science Foundation of China (No. 40805048,No. 11026226)Typhoon Research Foundation of Shanghai Typhoon Institute/China Meteorological Administration (No. 2008ST01)+1 种基金Research Foundation of State Key Laboratory of Remote Sensing Science,Jointly sponsored by the Instituteof Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University (No. 2009KFJJ013)Research Foundation of State Key Laboratory of Severe Weather/Chinese Academy of Meteorological Sciences (No. 2008LASW-B03)
文摘A novel nonlinear gray transform method is proposed to enhance the contrast of a typhoon cloud image.Generally,the typhoon cloud image obtained by a satellite cannot be directly used to make an accurate prediction of the typhoon's center or intensity because the contrast of the received typhoon cloud image may be bad.Our aim is to extrude the typhoon's eye in the typhoon cloud image.A normalized arc-tangent transformation operation is designed to enhance global contrast of the typhoon cloud image.Differential evolution algorithm is used to choose the optimal nonlinear transform parameter.Finally,geodesic activity contour model is used to extract the typhoon's eye to verify the performance of the proposed method.Experimental results show that the proposed method can efficiently enhance the global contrast of the typhoon cloud image while greatly extruding the typhoon's eye.
基金Supported by the National Natural Science Foun-dation of China (20506003) the National Basic Research ProgramofChina (973 Program2002CB312200) the ShangHai Science andTechnology of Phosphor of China (04QMX1433)
文摘A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodieally in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimenslonal olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.
文摘An evolutionary nature-inspired Firefly Algorithm (FA) is employed to set the optimal osmotic dehydration parameters in a case study of papaya. In the case, the functional form of the dehydration model is established via a response surface technique with the resulting optimization formulation being a non-linear goal programming model. For optimization, a computationally efficient, FA-driven method is employed and the resulting solution is shown to be superior to those from previous approaches for determining the osmotic process parameters. The final component of this study provides a computational experimentation performed on the FA to illustrate the relative sensitivity of this evolutionary metaheuristic approach over a range of the two key parameters that most influence its running time-the number of iterations and the number of fireflies. This sensitivity analysis revealed that for intermediate-to-high values of either of these two key parameters, the FA would always determine overall optimal solutions, while lower values of either parameter would generate greater variability in solution quality. Since the running time complexity of the FA is polynomial in the number of fireflies but linear in the number of iterations, this experimentation shows that it is more computationally practical to run the FA using a “reasonably small” number of fireflies together with a relatively larger number of iterations than the converse.
文摘In this work,a variable structure control(VSC)technique is proposed to achieve satisfactory robustness for unstable processes.Optimal values of unknown parameters of VSC are obtained using Whale optimization algorithm which was recently reported in literature.Stability analysis has been done to verify the suitability of the proposed structure for industrial processes.The proposed control strategy is applied to three different types of unstable processes including non-minimum phase and nonlinear systems.A comparative study ensures that the proposed scheme gives superior performance over the recently reported VSC system.Furthermore,the proposed method gives satisfactory results for a cart inverted pendulum system in the presence of external disturbance and noise.
基金Project(51975164)supported by the National Natural Science Foundation of ChinaProject(2019-KYYWF-0205)supported by the Fundamental Research Foundation for Universities of Heilongjiang Province,China。
文摘In order to meet the precision requirements and tracking performance of the continuous rotary motor electro-hydraulic servo system under unknown strong non-linear and uncertain strong disturbance factors,such as dynamic uncertainty and parameter perturbation,an improved active disturbance rejection control(ADRC)strategy was proposed.The state space model of the fifth order closed-loop system was established based on the principle of valve-controlled hydraulic motor.Then the three parts of ADRC were improved by parameter perturbation and external disturbance;the fast tracking differentiator was introduced into linear and non-linear combinations;the nonlinear state error feedback was proposed using synovial control;the extended state observer was determined by nonlinear compensation.In addition,the grey wolf algorithm was used to set the parameters of the three parts.The simulation and experimental results show that the improved ADRC can realize the system frequency 12 Hz when the tracking accuracy and response speed meet the requirements of double ten indexes,which lay foundation for the motor application.
基金This project is supported by National Natural Science Foundation of China (No. 5880203).
文摘In order to overcome the system non-linearity and uncertainty inherent in magnetic bearing systems, a GA(genetic algnrithm)-based PID neural network controller is designed and trained tO emulate the operation of a complete system (magnetic bearing, controller, and power amplifiers). The feasibility of using a neural network to control nonlinear magnetic bearing systems with unknown dynamics is demonstrated. The key concept of the control scheme is to use GA to evaluate the candidate solutions (chromosomes), increase the generalization ability of PID neural network and avoid suffering from the local minima problem in network learning due to the use of gradient descent learning method. The simulation results show that the proposed architecture provides well robust performance and better reinforcement learning capability in controlling magnetic bearing systems.
基金Supported by National Natural Science Foundation of China( No. 50378061).
文摘Based on a systemic survey, the pyrolysis characteristics and apparent kinetics of the municipal solid waste ( MSW) under different conditions were researched using a special pyrolysis reactor, which could overcome the disadvantage of thermo-gravimetric analyzer. The thermal decomposition behaviour of MSW was investigated using thermo-gravimetric ( TG ) analysis at rates of 4.8,6.6,8.4, 12.0 and 13. 2 K/min. The pyrolysis characteristics of MSW were also studied in different function districts. The pyrolysis of MSW is a complex reaction process and three main stages are found according to the results. The first stage represents the degradation of cellulose and hemicellulose, with the maximum degradation rate occuring at 150℃ -200 ℃: the second stage represents dehydrochlorination and depolymerization of intermediate products and the differential thermogravimetric ( DTG ) curves have shoulder peaks at about 300℃: the third stage is the decomposition of the residual big molecular organic substance and lignin at 400 ℃- 600 ℃. Within the range of given experimental conditions, the results of non-linear fitting algorithm and experiment are in agreement with each other and the correlation coefficients are over0. 99. The kinetic characteristics are concerned with the material component and heating rate. The activation energy of reaction decreases with the increase of heating rate.
基金supported by the National Basic Research of China(No.2002CB312102).
文摘In the research on spatial hearing and realization of virtual auditory space,it is important to effectively model the head-related transfer functions(HRTFs)or head-related impulse responses(HRIRs).In our study,we managed to carry out adaptive non-linear approximation in the field of wavelet transformation.The results show that the HRIRs’adaptive non-linear approximation model is a more effective data reduction model,is faster,and is 5 dB on average better than the traditional principal component analysis(PCA)(Karhunen-Loève transform)model based on relative mean square error(MSE)criterion.Furthermore,we also discussed the best bases’choice for the time-frequency representation of HRIRs,and the results show that local cosine bases are more propitious to HRIRs’adaptive approximation than wavelet and wavelet packet base.However,the improved effect of local cosine bases is not distinct.Here,for the sake of modeling the HRIRs more truthfully,we consider choosing optimal time-frequency atoms from redundant dictionary to decompose this kind of signals of HRIRs and achieve better results than all the previous models.
基金supported by the Ministry of Higher Education,Scientific Research and Innovation,the Digital Development Agency(DDA)and the Centre National pour la Recherche Scientifique et Technique(CNRST)of Morocco(Alkhawarizmi/2020/39).
文摘Most of the energy produced in the world is consumed by commercial and residential buildings.With the growth in the global economy and world demographics,this energy demand has become increasingly important.This has led to higher unit electricity prices,frequent stresses on the main electricity grid and carbon emissions due to inefficient energy management.This paper presents an energy-consumption management system based on time-shifting of loads according to the dynamic day-ahead electricity pricing.This simultaneously reduces the electricity bill and the peaks,while maintaining user comfort in terms of the operating waiting time of appliances.The proposed optimization problem is formulated mathematically in terms of multi-objective integer non-linear programming,which involves constraints and consumer preferences.For optimal scheduling,the management problem is solved using the hybridization of the particle swarm optimization algorithm and the branch-and-bound algorithm.Two techniques are proposed to manage the trade-off between the conflicting objectives.The first technique is the Pareto-optimal solutions classification using supervised learning methods.The second technique is called the lexicographic method.The simulations were performed based on residential building energy consumption,time-of-use pricing(TOU)and critical peak pricing(CPP).The algorithms were implemented in Python.The results of the current work show that the proposed approach is effective and can reduce the electricity bill and the peak-to-average ratio(PAR)by 28% and 49.32%,respectively,for the TOU tariff rate,and 48.91% and 47.87% for the CPP tariff rate by taking into account the consumer’s comfort level.
文摘To obtain a high specific work output,the large pressure ratios across the turbine are required.This can be achieved using a supersonic turbine.When the fluid mass flow is low,the impulse kind of one or two stages supersonic turbine is employed.To prevent losses due to low blade aspect ratio and issues related to manufacturing and industrial problems,the turbine is used in partial admission conditions.Studies show that the turbine efficiency is highly dependent on the amount of partial admission coefficient.The turbine efficiency in full admission is high,but the use of partial admission lowers the additional losses.Therefore,there will be a degree of partial admission in which the turbine will have the highest efficiency.The aim of this work is to achieve the optimum partial admission for a special impulse turbine as a case study.Therefore,in the beginning,an appropriate model of losses is presented.Then,using a nonlinear design optimization code,the partial admission of an impulse supersonic turbine is optimized.This code is written using a genetic algorithm.Then,using three-dimensional numerical analysis,the optimal model will be selected.In the optimization problem,the turbine efficiency is the objective function.The amount of design parameters and constraints used in this process are ten and eight,respectively.After the optimization process,prototypes of designed and modified turbines are made and tested.Test results were compared and analyzed.The results showed that the turbine efficiency is improved between 2.5%and 3%depending on various operation conditions.
文摘With the recent trends in urban agriculture and climate change,there is an emerging need for alternative plant culture techniques where dependence on soil can be eliminated.Hydroponic and aquaponic growth techniques have proven to be viable alternatives,but the lack of efficient and optimal practices for irrigation and nutrient supply limits its applications on a large-scale commercial basis.The main purpose of this research was to develop statistical methods and Machine Learning algorithms to regulate nutrient concentrations in aquaponic irrigation water based on plant needs,for achieving optimal plant growth and promoting broader adoption of aquaponic culture on a commercial scale.One of the key challenges to developing these algorithms is the sparsity of data which requires the use of Bolstered error estimation approaches.In this paper,several linear and non-linear algorithms trained on relatively small datasets using Bolstered error estimation techniques were evaluated,for selecting the best method in making decisions regarding the regulation of nutrients in hydroponic environments.After repeated tests on the dataset,it was decided that Semi-Bolstered Resubstitution Error estimation technique works best in our case using Linear Support Vector Machine as the classifier with the value of penalty parameter set to one.A set of recommended rules have been prescribed as a Decision Support System,using the output of the Machine Learning algorithm,which have been tested against the results of the baseline model.Further,the positive impact of the recommended nutrient concentrationson plant growth in aquaponic environments has been elaborately discussed.