An RF-UCard system is a contactless smartcard system with multiple chip operating systems and multiple applications. A multi-card collision occurs when more than one card within the reader’s read field and thus lower...An RF-UCard system is a contactless smartcard system with multiple chip operating systems and multiple applications. A multi-card collision occurs when more than one card within the reader’s read field and thus lowers the efficiency of the system. This paper presents a novel and enhanced algorithm to solve the multi-card collision problems in an RF-UCard system. The algorithm was originally inspired from framed ALOHA-based anti-collision algorithms applied in RFID systems. To maximize the system efficiency, a synchronous dynamic adjusting (SDA) scheme that adjusts both the frame size in the reader and the response probability in cards is developed and evaluated. Based on some mathematical results derived from the Poisson process and the occupancy problem, the algorithm takes the estimated card quantity and the new arriving cards in the current read cycle into consideration to adjust the frame size for the next read cycle. Also it changes the card response probability according to the request commands sent from the reader. Simulation results show that SDA outperforms other ALOHA-based anti-collision algorithms applied in RFID systems.展开更多
In this work,an optimal Q algorithm based on a collision recovery scheme is presented. Tags use BIBD-( 16,4,1) codes instead of RN16 s. Therefore,readers can make a valid recognition even in collision slots. A way of ...In this work,an optimal Q algorithm based on a collision recovery scheme is presented. Tags use BIBD-( 16,4,1) codes instead of RN16 s. Therefore,readers can make a valid recognition even in collision slots. A way of getting the optimal slot-count parameter is studied and an optimal Q algorithm is proposed. The theoretical and simulation results show that the proposed algorithm can improve reading efficiency by 100% more than the conventional Q algorithm. Moreover,the proposed scheme changes little to the existing standard. Thus,it is easy to implement and compatible with ISO 18000-6C.展开更多
The problem of how to distinguish and recognize more than one target when they are entering the working area of the Radio Frequency Identification( RFID ) system should be considered in design of the system. To avoi...The problem of how to distinguish and recognize more than one target when they are entering the working area of the Radio Frequency Identification( RFID ) system should be considered in design of the system. To avoid signal interference with each other among all targets, an anti collision algorithm as well as the condition of working stability is proposed. The computer simulation shows that the new algorithm will be of advantages in the process of system design.展开更多
文摘An RF-UCard system is a contactless smartcard system with multiple chip operating systems and multiple applications. A multi-card collision occurs when more than one card within the reader’s read field and thus lowers the efficiency of the system. This paper presents a novel and enhanced algorithm to solve the multi-card collision problems in an RF-UCard system. The algorithm was originally inspired from framed ALOHA-based anti-collision algorithms applied in RFID systems. To maximize the system efficiency, a synchronous dynamic adjusting (SDA) scheme that adjusts both the frame size in the reader and the response probability in cards is developed and evaluated. Based on some mathematical results derived from the Poisson process and the occupancy problem, the algorithm takes the estimated card quantity and the new arriving cards in the current read cycle into consideration to adjust the frame size for the next read cycle. Also it changes the card response probability according to the request commands sent from the reader. Simulation results show that SDA outperforms other ALOHA-based anti-collision algorithms applied in RFID systems.
基金Supported by the National Natural Science Foundation of China(No.61340005)Beijing Natural Science Foundation(No.4132012)+2 种基金Beijing Education Committee Science and Technology Development Plan(No.KM201411232011)Beijing Outstanding Personnel Training Project(No.2013D005007000006)Scientific Research Improving Project-Intelligent Sense and Information Processing(No.5211524100)
文摘In this work,an optimal Q algorithm based on a collision recovery scheme is presented. Tags use BIBD-( 16,4,1) codes instead of RN16 s. Therefore,readers can make a valid recognition even in collision slots. A way of getting the optimal slot-count parameter is studied and an optimal Q algorithm is proposed. The theoretical and simulation results show that the proposed algorithm can improve reading efficiency by 100% more than the conventional Q algorithm. Moreover,the proposed scheme changes little to the existing standard. Thus,it is easy to implement and compatible with ISO 18000-6C.
文摘The problem of how to distinguish and recognize more than one target when they are entering the working area of the Radio Frequency Identification( RFID ) system should be considered in design of the system. To avoid signal interference with each other among all targets, an anti collision algorithm as well as the condition of working stability is proposed. The computer simulation shows that the new algorithm will be of advantages in the process of system design.