An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the ...An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes.展开更多
A weighted algorithm for watermarking relational databases for copyright protection is presented. The possibility of watermarking an attribute is assigned according to its weight decided by the owner of the database. ...A weighted algorithm for watermarking relational databases for copyright protection is presented. The possibility of watermarking an attribute is assigned according to its weight decided by the owner of the database. A one-way hash function and a secret key known only to the owner of the data are used to select tuples and bits to mark. By assigning high weight to significant attributes, the scheme ensures that important attributes take more chance to be marked than less important ones. Experimental results show that the proposed scheme is robust against various forms of attacks, and has perfect immunity to subset attack.展开更多
As data grows in size,search engines face new challenges in extracting more relevant content for users’searches.As a result,a number of retrieval and ranking algorithms have been employed to ensure that the results a...As data grows in size,search engines face new challenges in extracting more relevant content for users’searches.As a result,a number of retrieval and ranking algorithms have been employed to ensure that the results are relevant to the user’s requirements.Unfortunately,most existing indexes and ranking algo-rithms crawl documents and web pages based on a limited set of criteria designed to meet user expectations,making it impossible to deliver exceptionally accurate results.As a result,this study investigates and analyses how search engines work,as well as the elements that contribute to higher ranks.This paper addresses the issue of bias by proposing a new ranking algorithm based on the PageRank(PR)algorithm,which is one of the most widely used page ranking algorithms We pro-pose weighted PageRank(WPR)algorithms to test the relationship between these various measures.The Weighted Page Rank(WPR)model was used in three dis-tinct trials to compare the rankings of documents and pages based on one or more user preferences criteria.Thefindings of utilizing the Weighted Page Rank model showed that using multiple criteria to rankfinal pages is better than using only one,and that some criteria had a greater impact on ranking results than others.展开更多
Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algori...Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.展开更多
A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances...A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above.展开更多
This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 t...This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.展开更多
Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the ...Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms.展开更多
By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failu...By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failure probability of the gate,first,the first reconvergent fan-ins corresponding to the reconvergent fan-outs were identified to locate the important signal correlation nodes based on the principle of homologous signal convergence.Secondly,the reconvergent fan-in nodes of the multiple reconverging structure in the circuit were identified by the sensitization path to determine the interference sources to the signal probability calculation.Then,the weighted signal probability was calculated by combining the weighted average approach to correct the signal probability.Finally,the reconvergent fan-out was quantified by the mixed-calculation strategy of signal probability to reduce the impact of multiple reconvergent fan-outs on the accuracy.Simulation results on ISCAS85 benchmarks circuits show that the proposed method has approximate linear time-space consumption with the increase in the number of the gate,and its accuracy is 4.2%higher than that of the IWAA.展开更多
Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be ...Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be addressed by large numbers of parties. This paper simplifies the algorithm of searching for the even alternating path that contains a maximal element using the minimal weighted k-matching theorem and intercept graph. A program for solving the maximal efficiency assignment problem was compiled. As a case study, the program was used to solve the assignment problem of water piping repair in the case of a large number of companies and broken pipes, and the validity of the program was verified.展开更多
The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the info...The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.展开更多
Social networks are becoming increasingly popular and influential,and users are frequently registered on multiple networks simultaneously,in many cases leaving large quantities of personal information on each network....Social networks are becoming increasingly popular and influential,and users are frequently registered on multiple networks simultaneously,in many cases leaving large quantities of personal information on each network.There is also a trend towards the personalization of web applications;to do this,the applications need to acquire information about the particular user.To maximise the use of the various sets of user information distributed on the web,this paper proposes a method to support the reuse and sharing of user profiles by different applications,and is based on user profile integration.To realize this goal,the initial task is user identification,and this forms the focus of the current paper.A new user identification method based on Multiple Attribute Decision Making(MADM) is described in which a subjective weight-directed objective weighting,which is obtained from the Similarity Weight method,is proposed to determine the relative weights of the common properties.Attribute Synthetic Evaluation is used to determine the equivalence of users.Experimental results show that the method is both feasible and effective despite the incompleteness of the candidate user dataset.展开更多
The product functional confguration(PFC)is typically used by frms to satisfy the individual requirements of customers and is realized based on market analysis.This study aims to help frms analyze functions and realize...The product functional confguration(PFC)is typically used by frms to satisfy the individual requirements of customers and is realized based on market analysis.This study aims to help frms analyze functions and realize functional confgurations using patent data.This study frst proposes a patent-data-driven PFC method based on a hypergraph network.It then constructs a weighted network model to optimize the combination of product function quantity and object from the perspective of big data,as follows:(1)The functional knowledge contained in the patent is extracted.(2)The functional hypergraph is constructed based on the co-occurrence relationship between patents and applicants.(3)The function and patent weight are calculated from the patent applicant’s perspective and patent value.(4)A weight calculation model of the PFC is developed.(5)The weighted frequent subgraph algorithm is used to obtain the optimal function combination list.This method is applied to an innovative design process of a bathroom shower.The results indicate that this method can help frms detach optimal function candidates and develop a multifunctional product.展开更多
In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology,...In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology, was applied to gas monitoring.The results show that the adaptive weighted algorithm can realize self-regulation by decreasingthe weight value of the failed sensor automatically, so as to eliminate the effect ofthe failed sensor and ensure the effectiveness and accuracy of the gas monitoring system.The BP neural network can not only effectively predict the gas gush quantity of the excavationroadway, but also accurately calculate the gas concentration in the region whereone or more sensors have failed, so as to provide the basis for judging the safety status ofthe roadway excavation.The experiments prove the superiority and feasibility of the applicationof information fusion in gas monitoring.展开更多
The sensor space high resolution Weighted Subspace Fitting (WSF) algorithm is expanded into beam space in this paper. Beam space WSF algorithm uses beam outputs of array which can be regarded as the outputs of an virt...The sensor space high resolution Weighted Subspace Fitting (WSF) algorithm is expanded into beam space in this paper. Beam space WSF algorithm uses beam outputs of array which can be regarded as the outputs of an virtual array having the same number of elements as the beam number to estimate target directions. In most underwater acoustic systems, the number of beams used for determining the direction of arrival is usually considerably less than that of the sensors, so the computation burdensome is decedent. Computer simulation results show that the beam space WSF algorithm retains the super performance of the sensor space WSF algorithm when applied to the beam outputs of some practical acoustic-receiving array.展开更多
Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communit...Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles). The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the opti- mization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to imnlement and practieal for real-time wave forecasting.展开更多
Since precise self-position estimation is required for autonomous flight of aerial robots, there has been some studies on self-position estimation of indoor aerial robots. In this study, we tackle the self-position es...Since precise self-position estimation is required for autonomous flight of aerial robots, there has been some studies on self-position estimation of indoor aerial robots. In this study, we tackle the self-position estimation problem by mounting a small downward-facing camera on the chassis of an aerial robot. We obtain robot position by sensing the features on the indoor floor.In this work, we used the vertex points(tile corners) where four tiles on a typical tiled floor connected, as an existing feature of the floor. Furthermore, a small lightweight microcontroller is mounted on the robot to perform image processing for the onboard camera. A lightweight image processing algorithm is developed. So, the real-time image processing could be performed by the microcontroller alone which leads to conduct on-board real time tile corner detection. Furthermore, same microcontroller performs control value calculation for flight commanding. The flight commands are implemented based on the detected tile corner information. The above mentioned all devices are mounted on an actual machine, and the effectiveness of the system was investigated.展开更多
The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number o...The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number of pigs in the house, age, feed intake,feeding time, the time when the ammonia concentration increased the fastest and the daily fixed cleaning time as variable factors for modelling, so that the model could obtain the current manure output according to the real-time input of time. A Backpropagation(BP) neural network was used for training. The cross-validation method was used to select the best hyperparameters, and the genetic algorithm(GA), particle swarm optimization(PSO) algorithm and mind evolutionary algorithm(MEA) were selected to optimize the initial network weights. The results showed that the model could predict the amount of manure in real-time according to the model input. After the cross-validation method determined the hyperparameters, the GA, PSO and MEA were used to optimize the manure prediction model. The GA had the best average performance.展开更多
To obtain a good interference fringe contrast and high fidelity,an automated beam iterative alignment is achieved in scanning beam interference lithography(SBIL).To solve the problem of alignment failure caused by a l...To obtain a good interference fringe contrast and high fidelity,an automated beam iterative alignment is achieved in scanning beam interference lithography(SBIL).To solve the problem of alignment failure caused by a large beam angle(or position)overshoot exceeding the detector range while also speeding up the convergence,a weighted iterative algorithm using a weight parameter that is changed linearly piecewise is proposed.The changes in the beam angle and position deviation during the alignment process based on different iterative algorithms are compared by experiment and simulation.The results show that the proposed iterative algorithm can be used to suppress the beam angle(or position)overshoot,avoiding alignment failure caused by over-ranging.In addition,the convergence speed can be effectively increased.The algorithm proposed can optimize the beam alignment process in SBIL.展开更多
With the continuous integration of Internet technology and people's lives,blockchain technology provides more possibilities for the development of the banking industry.Blockchain is a distributed database.It has t...With the continuous integration of Internet technology and people's lives,blockchain technology provides more possibilities for the development of the banking industry.Blockchain is a distributed database.It has the characteristics of non-tampering,openness,transparency,decentralization,and good anonymity.It can well solve the shortcomings of the current personal credit evaluation system,thus proposing corresponding strategies for banks.Firstly,this paper proposes the challenges and difficulties in building a personal credit data sharing system based on blockchain,designs a personal credit data sharing model based on blockchain technology,and proposes a personal credit evaluation mechanism based on blockchain,including three parts:credit mechanism,credit index,and weighted scoring algorithm.Finally,through the linear regression model,corresponding credit strategies are proposed for banks.展开更多
Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typical...Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typically use a small number of seed nodes that know their locations and protocols whereby other nodes estimate their locations from the messages they receive.For the inherent shortcomings of general particle filter(the sequential Monte Carlo method) this paper introduces particle swarm optimization and weighted centroid algorithm to optimize it.Based on improvement a distributed localization algorithm named WC-IPF(weighted centroid algorithm improved particle filter) has been proposed for localization.In this localization scheme the initial estimate position can be acquired by weighted centroid algorithm.Then the accurate position can be gotten via improved particle filter recursively.The extend simulation results show that the proposed algorithm is efficient for most condition.展开更多
基金The National High Technology Research and Development Program of China (863Program) ( No2009AA01Z235,2006AA01Z263)the Research Fund of the National Mobile Communications Research Laboratory of Southeast University(No2008A10)
文摘An improved parallel weighted bit-flipping(PWBF) algorithm is presented. To accelerate the information exchanges between check nodes and variable nodes, the bit-flipping step and the check node updating step of the original algorithm are parallelized. The simulation experiments demonstrate that the improved PWBF algorithm provides about 0. 1 to 0. 3 dB coding gain over the original PWBF algorithm. And the improved algorithm achieves a higher convergence rate. The choice of the threshold is also discussed, which is used to determine whether a bit should be flipped during each iteration. The appropriate threshold can ensure that most error bits be flipped, and keep the right ones untouched at the same time. The improvement is particularly effective for decoding quasi-cyclic low-density paritycheck(QC-LDPC) codes.
基金Supported by the Aeronautics Science Foundation of China (02F52033), the High-Technology Research Project of Jiangsu Province (BG2004005) and Youth Research Foundation of Qufu Normal Univer-sity(XJ02057)
文摘A weighted algorithm for watermarking relational databases for copyright protection is presented. The possibility of watermarking an attribute is assigned according to its weight decided by the owner of the database. A one-way hash function and a secret key known only to the owner of the data are used to select tuples and bits to mark. By assigning high weight to significant attributes, the scheme ensures that important attributes take more chance to be marked than less important ones. Experimental results show that the proposed scheme is robust against various forms of attacks, and has perfect immunity to subset attack.
文摘As data grows in size,search engines face new challenges in extracting more relevant content for users’searches.As a result,a number of retrieval and ranking algorithms have been employed to ensure that the results are relevant to the user’s requirements.Unfortunately,most existing indexes and ranking algo-rithms crawl documents and web pages based on a limited set of criteria designed to meet user expectations,making it impossible to deliver exceptionally accurate results.As a result,this study investigates and analyses how search engines work,as well as the elements that contribute to higher ranks.This paper addresses the issue of bias by proposing a new ranking algorithm based on the PageRank(PR)algorithm,which is one of the most widely used page ranking algorithms We pro-pose weighted PageRank(WPR)algorithms to test the relationship between these various measures.The Weighted Page Rank(WPR)model was used in three dis-tinct trials to compare the rankings of documents and pages based on one or more user preferences criteria.Thefindings of utilizing the Weighted Page Rank model showed that using multiple criteria to rankfinal pages is better than using only one,and that some criteria had a greater impact on ranking results than others.
基金This work is supported by The National Science Fund for Distinguished Young Scholars (60725105) National Basic Research Program of China (973 Program) (2009CB320404)+5 种基金 Program for Changjiang Scholars and Innovative Research Team in University (IRT0852) The National Natural Science Foundation of China (60972048, 61072068) The Special Fund of State Key Laboratory (ISN01080301) The Major program of National Science and Technology (2009ZX03007- 004) Supported by the 111 Project (B08038) The Key Project of Chinese Ministry of Education (107103).
文摘Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property.
基金Sponsored by the Teaching and Research Award Programfor Outstanding Young Teachers in High Education Institutions of MOE China(Grant No.ZDXM03006).
文摘A new method for power quality (PQ) disturbances identification is brought forward based on combining a neural network with least square (LS) weighted fusion algorithm. The characteristic components of PQ disturbances are distilled through an improved phase-located loop (PLL) system at first, and then five child BP ANNs with different structures are trained and adopted to identify the PQ disturbances respectively. The combining neural network fuses the identification results of these child ANNs with LS weighted fusion algorithm, and identifies PQ disturbances with the fused result finally. Compared with a single neural network, the combining one with LS weighted fusion algorithm can identify the PQ disturbances correctly when noise is strong. However, a single neural network may fail in this case. Furthermore, the combining neural network is more reliable than a single neural network. The simulation results prove the conclusions above.
文摘This study used Topological Weighted Centroid (TWC) to analyze the Coronavirus outbreak in Brazil. This analysis only uses latitude and longitude in formation of the capitals with the confirmed cases on May 24, 2020 to illustrate the usefulness of TWC though any date could have been used. There are three types of TWC analyses, each type having five associated algorithms that produce fifteen maps, TWC-Original, TWC-Frequency and TWC-Windowing. We focus on TWC-Original to illustrate our approach. The TWC method without using the transportation information predicts the network for COVID-19 outbreak that matches very well with the main radial transportation routes network in Brazil.
基金This research is funded by Prince Sattam BinAbdulaziz University,Grant Number IF-PSAU-2021/01/18921.
文摘Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms.
基金The National Natural Science Foundation of China(No.61502422)the Natural Science Foundation of Zhejiang Province(No.LY18F020028,LQ15F020006)the Natural Science Foundation of Zhejiang University of Technology(No.2014XY007)
文摘By analyzing the structures of circuits,a novel approach for signal probability estimation of very large-scale integration(VLSI)based on the improved weighted averaging algorithm(IWAA)is proposed.Considering the failure probability of the gate,first,the first reconvergent fan-ins corresponding to the reconvergent fan-outs were identified to locate the important signal correlation nodes based on the principle of homologous signal convergence.Secondly,the reconvergent fan-in nodes of the multiple reconverging structure in the circuit were identified by the sensitization path to determine the interference sources to the signal probability calculation.Then,the weighted signal probability was calculated by combining the weighted average approach to correct the signal probability.Finally,the reconvergent fan-out was quantified by the mixed-calculation strategy of signal probability to reduce the impact of multiple reconvergent fan-outs on the accuracy.Simulation results on ISCAS85 benchmarks circuits show that the proposed method has approximate linear time-space consumption with the increase in the number of the gate,and its accuracy is 4.2%higher than that of the IWAA.
文摘Solving the absent assignment problem of the shortest time limit in a weighted bipartite graph with the minimal weighted k-matching algorithm is unsuitable for situations in which large numbers of problems need to be addressed by large numbers of parties. This paper simplifies the algorithm of searching for the even alternating path that contains a maximal element using the minimal weighted k-matching theorem and intercept graph. A program for solving the maximal efficiency assignment problem was compiled. As a case study, the program was used to solve the assignment problem of water piping repair in the case of a large number of companies and broken pipes, and the validity of the program was verified.
基金New Brunswick Innovation Foundation(NBIF)for the financial support of the global project.
文摘The demands on conventional communication networks are increasing rapidly because of the exponential expansion of connected multimedia content.In light of the data-centric aspect of contemporary communication,the information-centric network(ICN)paradigm offers hope for a solution by emphasizing content retrieval by name instead of location.If 5G networks are to meet the expected data demand surge from expanded connectivity and Internet of Things(IoT)devices,then effective caching solutions will be required tomaximize network throughput andminimize the use of resources.Hence,an ICN-based Cooperative Caching(ICN-CoC)technique has been used to select a cache by considering cache position,content attractiveness,and rate prediction.The findings show that utilizing our suggested approach improves caching regarding the Cache Hit Ratio(CHR)of 84.3%,Average Hop Minimization Ratio(AHMR)of 89.5%,and Mean Access Latency(MAL)of 0.4 s.Within a framework,it suggests improved caching strategies to handle the difficulty of effectively controlling data consumption in 5G networks.These improvements aim to make the network run more smoothly by enhancing content delivery,decreasing latency,and relieving congestion.By improving 5G communication systems’capacity tomanage the demands faced by modern data-centric applications,the research ultimately aids in advancement.
基金supported in part by the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.2013JM8021the National Natural Science Foundation of China under Grant No.61272458
文摘Social networks are becoming increasingly popular and influential,and users are frequently registered on multiple networks simultaneously,in many cases leaving large quantities of personal information on each network.There is also a trend towards the personalization of web applications;to do this,the applications need to acquire information about the particular user.To maximise the use of the various sets of user information distributed on the web,this paper proposes a method to support the reuse and sharing of user profiles by different applications,and is based on user profile integration.To realize this goal,the initial task is user identification,and this forms the focus of the current paper.A new user identification method based on Multiple Attribute Decision Making(MADM) is described in which a subjective weight-directed objective weighting,which is obtained from the Similarity Weight method,is proposed to determine the relative weights of the common properties.Attribute Synthetic Evaluation is used to determine the equivalence of users.Experimental results show that the method is both feasible and effective despite the incompleteness of the candidate user dataset.
基金Supported by National Natural Science Foundation of China(Grant No.51875220)China Fujian Province Social Science Foundation Research Project(Grant No.FJ2021B128).
文摘The product functional confguration(PFC)is typically used by frms to satisfy the individual requirements of customers and is realized based on market analysis.This study aims to help frms analyze functions and realize functional confgurations using patent data.This study frst proposes a patent-data-driven PFC method based on a hypergraph network.It then constructs a weighted network model to optimize the combination of product function quantity and object from the perspective of big data,as follows:(1)The functional knowledge contained in the patent is extracted.(2)The functional hypergraph is constructed based on the co-occurrence relationship between patents and applicants.(3)The function and patent weight are calculated from the patent applicant’s perspective and patent value.(4)A weight calculation model of the PFC is developed.(5)The weighted frequent subgraph algorithm is used to obtain the optimal function combination list.This method is applied to an innovative design process of a bathroom shower.The results indicate that this method can help frms detach optimal function candidates and develop a multifunctional product.
基金Supported by the National Natural Science Foundation of China(50874106)the National High Technology Research and Development Program of China(2007AA06Z114)
文摘In view of the deficiency of current gas monitoring systems in coal mine roadwayexcavation, a two-level information fusion technology, which adopted the adaptiveweighted algorithm and the BP neural network technology, was applied to gas monitoring.The results show that the adaptive weighted algorithm can realize self-regulation by decreasingthe weight value of the failed sensor automatically, so as to eliminate the effect ofthe failed sensor and ensure the effectiveness and accuracy of the gas monitoring system.The BP neural network can not only effectively predict the gas gush quantity of the excavationroadway, but also accurately calculate the gas concentration in the region whereone or more sensors have failed, so as to provide the basis for judging the safety status ofthe roadway excavation.The experiments prove the superiority and feasibility of the applicationof information fusion in gas monitoring.
基金National Natural Science Foundation of China !(69802010)
文摘The sensor space high resolution Weighted Subspace Fitting (WSF) algorithm is expanded into beam space in this paper. Beam space WSF algorithm uses beam outputs of array which can be regarded as the outputs of an virtual array having the same number of elements as the beam number to estimate target directions. In most underwater acoustic systems, the number of beams used for determining the direction of arrival is usually considerably less than that of the sensors, so the computation burdensome is decedent. Computer simulation results show that the beam space WSF algorithm retains the super performance of the sensor space WSF algorithm when applied to the beam outputs of some practical acoustic-receiving array.
基金supported by the European Commission within FP7-THEME 6(Grant No.244104)the Natural Environment Research Council(NERC)of the UK(Grant No.NE/J005541/1)the Ministry of Science and Technology(MOST)of Taiwan(Grant No.MOST 104-2221-E-006-183)
文摘Accurately forecasting ocean waves during typhoon events is extremely important in aiding the mitigation and minimization of their potential damage to the coastal infrastructure, and the protection of coastal communities. However, due to the complex hydrological and meteorological interaction and uncertainties arising from different modeling systems, quantifying the uncertainties and improving the forecasting accuracy of modeled typhoon-induced waves remain challenging. This paper presents a practical approach to optimizing model-ensemble wave heights in an attempt to improve the accuracy of real-time typhoon wave forecasting. A locally weighted learning algorithm is used to obtain the weights for the wave heights computed by the WAVEWATCH III wave model driven by winds from four different weather models (model-ensembles). The optimized weights are subsequently used to calculate the resulting wave heights from the model-ensembles. The results show that the opti- mization is capable of capturing the different behavioral effects of the different weather models on wave generation. Comparison with the measurements at the selected wave buoy locations shows that the optimized weights, obtained through a training process, can significantly improve the accuracy of the forecasted wave heights over the standard mean values, particularly for typhoon-induced peak waves. The results also indicate that the algorithm is easy to imnlement and practieal for real-time wave forecasting.
基金supported by Branding Research Fund by Shibaura Institute of Technology(SIT)。
文摘Since precise self-position estimation is required for autonomous flight of aerial robots, there has been some studies on self-position estimation of indoor aerial robots. In this study, we tackle the self-position estimation problem by mounting a small downward-facing camera on the chassis of an aerial robot. We obtain robot position by sensing the features on the indoor floor.In this work, we used the vertex points(tile corners) where four tiles on a typical tiled floor connected, as an existing feature of the floor. Furthermore, a small lightweight microcontroller is mounted on the robot to perform image processing for the onboard camera. A lightweight image processing algorithm is developed. So, the real-time image processing could be performed by the microcontroller alone which leads to conduct on-board real time tile corner detection. Furthermore, same microcontroller performs control value calculation for flight commanding. The flight commands are implemented based on the detected tile corner information. The above mentioned all devices are mounted on an actual machine, and the effectiveness of the system was investigated.
基金the National Key Research and Development Program (2018YFD0500704-03)Proiect of Ministry of Agriculture and Rura Affairs (SK201707)。
文摘The automatic control of cleaning need to be based on the total amount of manure in the house. Therefore, this article established a prediction model for the total amount of manure in a pig house and took the number of pigs in the house, age, feed intake,feeding time, the time when the ammonia concentration increased the fastest and the daily fixed cleaning time as variable factors for modelling, so that the model could obtain the current manure output according to the real-time input of time. A Backpropagation(BP) neural network was used for training. The cross-validation method was used to select the best hyperparameters, and the genetic algorithm(GA), particle swarm optimization(PSO) algorithm and mind evolutionary algorithm(MEA) were selected to optimize the initial network weights. The results showed that the model could predict the amount of manure in real-time according to the model input. After the cross-validation method determined the hyperparameters, the GA, PSO and MEA were used to optimize the manure prediction model. The GA had the best average performance.
基金The research was supported by the National Natural Science Foundation of China(NSFC)(Grant No.61227901)Jilin Province Science&Technology Development Program Project in China(Grant No.20190103157JH).
文摘To obtain a good interference fringe contrast and high fidelity,an automated beam iterative alignment is achieved in scanning beam interference lithography(SBIL).To solve the problem of alignment failure caused by a large beam angle(or position)overshoot exceeding the detector range while also speeding up the convergence,a weighted iterative algorithm using a weight parameter that is changed linearly piecewise is proposed.The changes in the beam angle and position deviation during the alignment process based on different iterative algorithms are compared by experiment and simulation.The results show that the proposed iterative algorithm can be used to suppress the beam angle(or position)overshoot,avoiding alignment failure caused by over-ranging.In addition,the convergence speed can be effectively increased.The algorithm proposed can optimize the beam alignment process in SBIL.
文摘With the continuous integration of Internet technology and people's lives,blockchain technology provides more possibilities for the development of the banking industry.Blockchain is a distributed database.It has the characteristics of non-tampering,openness,transparency,decentralization,and good anonymity.It can well solve the shortcomings of the current personal credit evaluation system,thus proposing corresponding strategies for banks.Firstly,this paper proposes the challenges and difficulties in building a personal credit data sharing system based on blockchain,designs a personal credit data sharing model based on blockchain technology,and proposes a personal credit evaluation mechanism based on blockchain,including three parts:credit mechanism,credit index,and weighted scoring algorithm.Finally,through the linear regression model,corresponding credit strategies are proposed for banks.
文摘Many sensor network applications require location awareness,but it is often too expensive to equip a global positioning system(GPS) receiver for each network node.Hence,localization schemes for sensor networks typically use a small number of seed nodes that know their locations and protocols whereby other nodes estimate their locations from the messages they receive.For the inherent shortcomings of general particle filter(the sequential Monte Carlo method) this paper introduces particle swarm optimization and weighted centroid algorithm to optimize it.Based on improvement a distributed localization algorithm named WC-IPF(weighted centroid algorithm improved particle filter) has been proposed for localization.In this localization scheme the initial estimate position can be acquired by weighted centroid algorithm.Then the accurate position can be gotten via improved particle filter recursively.The extend simulation results show that the proposed algorithm is efficient for most condition.