期刊文献+
共找到913篇文章
< 1 2 46 >
每页显示 20 50 100
Highly Aligned Graphene Aerogels for Multifunctional Composites
1
作者 Ying Wu Chao An +4 位作者 Yaru Guo Yangyang Zong Naisheng Jiang Qingbin Zheng Zhong‑Zhen Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期276-342,共67页
Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,an... Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material. 展开更多
关键词 Highly aligned graphene aerogels Quantitative characterization of alignment Multifunctional composites Anisotropic properties Multifunctional applications
下载PDF
P-and SV-wave dispersion and attenuation in saturated microcracked porous rock with aligned penny-shaped fractures
2
作者 Sheng-Qing Li Wen-Hao Wang +2 位作者 Yuan-Da Su Jun-Xin Guo Xiao-Ming Tang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期143-161,共19页
P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation me... P-and SV-wave dispersion and attenuation have been extensively investigated in saturated poroelastic media with aligned fractures.However,there are few existing models that incorporate the multiple wave attenuation mechanisms from the microscopic scale to the macroscopic scale.Hence,in this work,we developed a unified model to incorporate the wave attenuation mechanisms at different scales,which includes the microscopic squirt flow between the microcracks and pores,the mesoscopic wave-induced fluid flow between fractures and background(FB-WIFF),and the macroscopic Biot's global flow and elastic scattering(ES)from the fractures.Using Tang's modified Biot's theory and the mixed-boundary conditions,we derived the exact frequency-dependent solutions of the scattering problem for a single penny-shaped fracture with oblique incident P-and SV-waves.We then developed theoretical models for a set of aligned fractures and randomly oriented fractures using the Foldy approximation.The results indicated that microcrack squirt flow considerably influences the dispersion and attenuation of P-and SV-wave velocities.The coupling effects of microcrack squirt flow with the FB-WIFF and ES of fractures cause much higher velocity dispersion and attenuation for P waves than for SV waves.Randomly oriented fractures substantially reduce the attenuation caused by the FB-WIFF and ES,particularly for the ES attenuation of SV waves.Through a comparison with existing models in the limiting cases and previous experimental measurements,we validated our model. 展开更多
关键词 aligned fractures P-and SV-wave Dispersion and attenuation Microcracked porous background FB-WIFF Elastic scattering Squirt flow
下载PDF
Paving continuous heat dissipation pathways for quantum dots in polymer with orangeinspired radially aligned UHMWPE fibers
3
作者 Xuan Yang Xinfeng Zhang +3 位作者 Tianxu Zhang Linyi Xiang Bin Xie Xiaobing Luo 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第7期27-38,共12页
Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fil... Thermal management of nanoscale quantum dots(QDs)in light-emitting devices is a long-lasting challenge.The existing heat transfer reinforcement solutions for QDs-polymer composite mainly rely on thermal-conductive fillers.However,this strategy failed to deliver the QDs’heat generation across a long distance,and the accumulated heat still causes considerable temperature rise of QDs-polymer composite,which eventually menaces the performance and reliability of lightemitting devices.Inspired by the radially aligned fruit fibers in oranges,we proposed to eliminate this heat dissipation challenge by establishing long-range ordered heat transfer pathways within the QDs-polymer composite.Ultrahigh molecular weight polyethylene fibers(UPEF)were radially aligned throughout the polymer matrix,thus facilitating massive efficient heat dissipation of the QDs.Under a UPEF filling fraction of 24.46 vol%,the in-plane thermal conductivity of QDs-radially aligned UPEF composite(QDs-RAPE)could reach 10.45 W m^(−1) K^(−1),which is the highest value of QDs-polymer composite reported so far.As a proof of concept,the QDs’working temperature can be reduced by 342.5℃ when illuminated by a highly concentrated laser diode(LD)under driving current of 1000 mA,thus improving their optical performance.This work may pave a new way for next generation high-power QDs lighting applications. 展开更多
关键词 quantum dots UHMWPE fibers radial alignment heat dissipation light-emitting devices
下载PDF
Kinematically Aligned Total Knee Arthroplasty for Valgus Osteoarthritis of More than 10°―Is It Still a “Challenging Surgery”?
4
作者 Yoshinori Soda Toshiya Kano Mitsuhiro Nakamura 《Open Journal of Orthopedics》 2023年第9期355-369,共15页
Mechanically aligned total knee arthroplasty (TKA) for valgus knee is considered a “challenging surgery.” Recently, the kinematic alignment (KA) method has gained attention. This study aimed to present objective cli... Mechanically aligned total knee arthroplasty (TKA) for valgus knee is considered a “challenging surgery.” Recently, the kinematic alignment (KA) method has gained attention. This study aimed to present objective clinical data, such as intraoperative balance assessment and radiographic evaluation of postoperative lower extremity alignment after TKA using the KA method for valgus deformity. Twenty-one TKA knees (mean age, 74 years;2 males, 19 females) with KA for severe valgus deformity (hip-knee-ankle-angle ≥ 10°) performed at our department in the past 3 years were included in this study. Intraoperative gap and balance measurements and postoperative radiographic evaluation were performed. A total arc of range of motion was achieved up to 98% of preoperative values at 3 weeks postoperatively. Intraoperative gap and balance were stable throughout the entire range of motion. In addition, there were no statistically significant differences in either balance or gap values at each flexion angle. KA TKA is a “simple surgery” rather than a “challenging surgery” because additional soft tissue procedures are not required, operative time is short, intraoperative and postoperative balance is very stable, and a good alignment is achieved. This procedure may relieve surgeons of the stress of TKA for valgus deformities. 展开更多
关键词 Total Knee Arthroplasty Kinematic Alignment Valgus Deformity Calipered Technique
下载PDF
完全区组设计下基于Aligned秩的有方向检验问题 被引量:1
5
作者 王静龙 李贵军 《应用概率统计》 CSCD 北大核心 2008年第4期421-431,共11页
本文基于Aligned秩给出了用于解完全区组设计有方向检验问题的,我们称之为C-检验的检验方法.本文分别对每个试验单元仅有一个观测值以及等重复观测值和不等重复观测值各种情形下的C检验进行了讨论,并在原假设H0成立时计算了上述各种情形... 本文基于Aligned秩给出了用于解完全区组设计有方向检验问题的,我们称之为C-检验的检验方法.本文分别对每个试验单元仅有一个观测值以及等重复观测值和不等重复观测值各种情形下的C检验进行了讨论,并在原假设H0成立时计算了上述各种情形下C检验统计量的数学期望和方差,且证明了C检验统计量的渐近分布为正态分布. 展开更多
关键词 完全区组设计 有方向检验 aligned C检验
下载PDF
1.5μm Self-Aligned Spotsize Converter Integrated DFB Fabricated by Selective Area Grown MOVPE
6
作者 邱伟彬 董杰 +1 位作者 王圩 周帆 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第7期681-684,共4页
High performance 1 57μm spotsize converter monolithically integrated DFB is fabricated by the technique of self aligned selective area growth.The upper optical confinement layer and the butt coupled tapered thickn... High performance 1 57μm spotsize converter monolithically integrated DFB is fabricated by the technique of self aligned selective area growth.The upper optical confinement layer and the butt coupled tapered thickness waveguide are regrown simultaneously,which not only offeres the separated optimization of the active region and the integrated spotsize converter,but also reduces the difficulty of the butt joint selective regrowth.The threshold current is as low as 4 4mA.The output power at 49mA is 10 1mW.The side mode suppression ratio (SMSR) is 33 2dB.The vertical and horizontal far field divergence angles are as small as 9° and 15° respectively,the 1dB misalignment tolerance are 3 6μm and 3 4μm. 展开更多
关键词 spotsize converter self aligned butt joint selective area growth
下载PDF
Self-Aligned InGaP/GaAs Power HBTswith a Low Bias Voltage
7
作者 郑丽萍 孙海锋 +4 位作者 狄浩成 樊宇伟 王素琴 刘新宇 吴德馨 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第8期908-912,共5页
A self aligned InGaP/GaAs power HBTs for L band power amplifier with low bias voltage are described.Base emitter metal self aligning,air bridge,and wafer thinning are used to improve microwave power performance.A... A self aligned InGaP/GaAs power HBTs for L band power amplifier with low bias voltage are described.Base emitter metal self aligning,air bridge,and wafer thinning are used to improve microwave power performance.A power HBT with double size of emitter of (3μm×15μm)×12 is fabricated.When the packaged HBT operates in class AB at a collector bias of 3V,a maximum 23dBm output power with 45% power added efficiency is achieved at 2GHz.The results show that the InGaP/GaAs power HBTs have great potential in mobile communication systems operating at low bias voltage. 展开更多
关键词 self aligned INGAP power HBTs low bias voltage
下载PDF
Printable Aligned Single-Walled Carbon Nanotube Film with Outstanding Thermal Conductivity and Electromagnetic Interference Shielding Performance 被引量:9
8
作者 Zhihui Zeng Gang Wang +8 位作者 Brendan F.Wolan Na Wu Changxian Wang Shanyu Zhao Shengying Yue Bin Li Weidong He Jiurong Liu Joseph W.Lyding 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第11期143-156,共14页
Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic ... Ultrathin,lightweight,and flexible aligned single-walled carbon nanotube(SWCNT)films are fabricated by a facile,environmentally friendly,and scalable printing methodology.The aligned pattern and outstanding intrinsic properties render“metal-like”thermal conductivity of the SWCNT films,as well as excellent mechanical strength,flexibility,and hydrophobicity.Further,the aligned cellular microstructure promotes the electromagnetic interference(EMI)shielding ability of the SWCNTs,leading to excellent shielding effectiveness(SE)of~39 to 90 dB despite a density of only~0.6 g cm^(−3) at thicknesses of merely 1.5-24μm,respectively.An ultrahigh thickness-specific SE of 25693 dB mm^(−1) and an unprecedented normalized specific SE of 428222 dB cm^(2)g^(−1) are accomplished by the freestanding SWCNT films,significantly surpassing previously reported shielding materials.In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz,the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation,chemical(acid/alkali/organic solvent)corrosion,and high-/low-temperature environments.The novel printed SWCNT films offer significant potential for practical applications in the aerospace,defense,precision components,and smart wearable electronics industries. 展开更多
关键词 aligned film Single-walled carbon nanotube LIGHTWEIGHT FLEXIBLE Thermal conductivity Electromagnetic interference shielding
下载PDF
Significantly Enhanced Electromagnetic Interference Shielding Performances of Epoxy Nanocomposites with Long-Range Aligned Lamellar Structures 被引量:11
9
作者 Lei Wang Zhonglei Ma +3 位作者 Hua Qiu Yali Zhang Ze Yu Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期617-629,共13页
High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(... High-efficiency electromagnetic interference(EMI)shielding materials are of great importance for electronic equipment reliability,information security and human health.In this work,bidirectional aligned Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/CNF aerogels(BTFCA)were firstly assembled by bidirectional freezing and freeze-drying technique,and the BTFCA/epoxy nanocomposites with long-range aligned lamellar structures were then prepared by vacuum-assisted impregnation of epoxy resins.Benefitting from the successful construction of bidirectional aligned three-dimensional conductive networks and electromagnetic synergistic effect,when the mass fraction of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4) are 2.96 and 1.48 wt%,BTFCA/epoxy nanocomposites show outstanding EMI shield-ing effectiveness of 79 dB,about 10 times of that of blended Ti_(3)C_(2)T_(x)@Fe_(3)O_(4)/epoxy(8 dB)nanocomposites with the same loadings of Ti_(3)C_(2)T_(x) and Fe_(3)O_(4).Meantime,the corresponding BTFCA/epoxy nanocomposites also present excellent thermal stability(T_(heat-resistance index) of 198.7℃)and mechanical properties(storage modulus of 9902.1 MPa,Young’s modulus of 4.51 GPa and hardness of 0.34 GPa).Our fabricated BTFCA/epoxy nanocomposites would greatly expand the applications of MXene and epoxy resins in the fields of information security,aerospace and weapon manufacturing,etc. 展开更多
关键词 Electromagnetic interference shielding Epoxy nanocomposites Ti_(3)C_(2)Tx Fe_(3)O_(4) Bidirectional aligned three-dimensional conductive networks
下载PDF
Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods 被引量:9
10
作者 Linwei Zhu Yaoyu Cao +5 位作者 Qiuqun Chen Xu Ouyang Yi Xu Zhongliang Hu Jianrong Qiu Xiangping Li 《Opto-Electronic Advances》 SCIE 2021年第11期55-63,共9页
Encoding information in light polarization is of great importance in facilitating optical data storage(ODS)for information security and data storage capacity escalation.However,despite recent advances in nanophotonic ... Encoding information in light polarization is of great importance in facilitating optical data storage(ODS)for information security and data storage capacity escalation.However,despite recent advances in nanophotonic techniques vastly en-hancing the feasibility of applying polarization channels,the data fidelity in reconstructed bits has been constrained by severe crosstalks occurring between varied polarization angles during data recording and reading process,which gravely hindered the utilization of this technique in practice.In this paper,we demonstrate an ultra-low crosstalk polarization-en-coding multilayer ODS technique for high-fidelity data recording and retrieving by utilizing a nanofibre-based nanocom-posite film involving highly aligned gold nanorods(GNRs).With parallelizing the gold nanorods in the recording medium,the information carrier configuration minimizes miswriting and misreading possibilities for information input and output,respectively,compared with its randomly self-assembled counterparts.The enhanced data accuracy has significantly im-proved the bit recall fidelity that is quantified by a correlation coefficient higher than 0.99.It is anticipated that the demon-strated technique can facilitate the development of multiplexing ODS for a greener future. 展开更多
关键词 optical data storage aligned gold nanorods FIDELITY nanocomposite film
下载PDF
Elastic properties of transversely isotropic rocks containing aligned cracks and application to anisotropy measurement 被引量:4
11
作者 Xu Song Su Yuan-Dat Tang Xiao-Ming 《Applied Geophysics》 SCIE CSCD 2020年第2期182-191,314,共11页
Currently,most rock physics models,used for evaluating the elastic properties of cracked or fractured media,take into account the crack properties,but not the background anisotropy.This creats the errors of in the ani... Currently,most rock physics models,used for evaluating the elastic properties of cracked or fractured media,take into account the crack properties,but not the background anisotropy.This creats the errors of in the anisotropy estimates by using fi eld logging data.In this work,based on the scattered wavefi eld theory,a sphere-equivalency method of elastic wave scattering was developed to accurately calculate the elastic properties of a vertical transversely isotropic solid containing aligned cracks.By setting the scattered wavefi eld due to a crack equal to that due to an equivalent sphere,an eff ective elastic stiff ness tensor was derived for the cracked medium.The stability and accuracy of the approach were determined for varying background anisotropy values.The results show that the anisotropy of the eff ective media is aff ected by cracks and background anisotropy for transversely isotropic background permeated by horizontally aligned cracks,especially for the elastic wave propagating along the horizontal direction.Meanwhile,the crack orientation has a signifi cant infl uence on the elastic wave velocity anisotropy.The theory was subsequently applied to model laboratory ultrasonic experimental data for artifi cially cracked samples and to model borehole acoustic anisotropy measurements.After considering the background anisotropy,the model shows an improvement in the agreement between theoretical predictions and measurement data,demonstrating that the present theory can adequately explain the anisotropic characteristics of cracked media. 展开更多
关键词 ANISOTROPY aligned cracks alignment direction elastic wave velocity data processing
下载PDF
Aligned fibers enhance nerve guide conduits when bridging peripheral nerve defects focused on early repair stage 被引量:3
12
作者 Qi Quan Hao-Ye Meng +7 位作者 Biao Chang Guang-Bo Liu Xiao-Qing Cheng He Tang Yu Wang Jiang Peng Qing Zhao Shi-Bi Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第5期903-912,共10页
Nerve conduits enhance nerve regeneration in the repair of long-distance peripheral nerve defects. To help optimize the effectiveness of nerve conduits for nerve repair, we developed a multi-step electrospinning proce... Nerve conduits enhance nerve regeneration in the repair of long-distance peripheral nerve defects. To help optimize the effectiveness of nerve conduits for nerve repair, we developed a multi-step electrospinning process for constructing nerve guide conduits with aligned nanofibers. The alignment of the nerve guide conduits was characterized by scanning electron microscopy and fast Fourier transform. The mechanical performance of the nerve guide conduits was assessed by testing for tensile strength and compression resistance. The biological performance of the aligned fibers was examined using Schwann cells, PC12 cells and dorsal root ganglia in vitro. Immunohistochemistry was performed for the Schwann cell marker S100 and for the neurofilament protein NF200 in PC12 cells and dorsal root ganglia. In the in vivo experiment, a 1.5-cm defect model of the right sciatic nerve in adult female Sprague-Dawley rats was produced and bridged with an aligned nerve guide conduit. Hematoxylin-eosin staining and immunohistochemistry were used to observe the expression of ATF3 and cleaved caspase-3 in the regenerating matrix. The recovery of motor function was evaluated using the static sciatic nerve index. The number of myelinated fibers, axon diameter, fiber diameter, and myelin thickness in the distal nerve were observed by electron microscopy. Gastrocnemius muscle mass ratio was also determined. The analyses revealed that aligned nanofiber nerve guide conduits have good mechanical properties and can induce Schwann cells, PC12 cells and dorsal root ganglia to aggregate along the length of the nanofibers, and promote the growth of longer axons in the latter two(neuronal) cell types. The aligned fiber nerve conduits increased the expression of ATF3 and cleaved caspase-3 at the middle of the regenerative matrix and at the distal nerve segment, improved sciatic nerve function, increased muscle mass of the gastrocnemius muscle, and enhanced recovery of distal nerve ultrastructure. Collectively, the results show that highly aligned nanofibers improve the performance of the nerve conduit bridge, and enhance its effectiveness in repairing peripheral nerve defects. 展开更多
关键词 NERVE REGENERATION NERVE guide CONDUIT electrospinning peripheral NERVE injury aligned fiber SCIATIC NERVE structure mechanical function NERVE scaffold nanofiber neural REGENERATION
下载PDF
Growth of aligned SnS nanowire arrays for near infrared photodetectors 被引量:3
13
作者 Guozhen Shen Haoran Chen Zheng Lou 《Journal of Semiconductors》 EI CAS CSCD 2020年第4期95-100,共6页
Aligned SnS nanowires arrays were grown via a simple chemical vapor deposition method.As-synthesized SnS nanowires are single crystals grown along the[111]direction.The single SnS nanowire based device showed excellen... Aligned SnS nanowires arrays were grown via a simple chemical vapor deposition method.As-synthesized SnS nanowires are single crystals grown along the[111]direction.The single SnS nanowire based device showed excellent response to near infrared lights with good responsivity of 267.9 A/W,high external quantum efficiency of 3.12×10^4%and fast response time.Photodetectors were built on the aligned SnS nanowire arrays,exhibiting a light on/off ratio of 3.6,and the response and decay time of 4.5 and 0.7 s,respectively,to 1064 nm light illumination. 展开更多
关键词 PHOTODETECTORS NANOWIRES INFRARED aligned
下载PDF
High-performance proton exchange membrane fuel cell with ultra-low loading Pt on vertically aligned carbon nanotubes as integrated catalyst layer 被引量:3
14
作者 Qing Hao Meng Chao Hao +4 位作者 Bowen Yan Bin Yang Jia Liu Pei Kang Shen Zhi Qun Tian 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期497-506,I0013,共11页
Reducing a Pt loading with improved power output and durability is essential to promote the large-scale application of proton exchange membrane fuel cells(PEMFCs).To achieve this goal,constructing optimized structure ... Reducing a Pt loading with improved power output and durability is essential to promote the large-scale application of proton exchange membrane fuel cells(PEMFCs).To achieve this goal,constructing optimized structure of catalyst layers with efficient mass transportation channels plays a vital role.Herein,PEMFCs with order-structured cathodic electrodes were fabricated by depositing Pt nanoparticles by Ebeam onto vertically aligned carbon nanotubes(VACNTs)growth on Al foil via plasma-enhanced chemical vapor deposition.Results demonstrate that the proportion of hydrophilic Pt-deposited region along VACNTs and residual hydrophobic region of VANCTs without Pt strongly influences the cell performance,in particular at high current densities.When Pt nanoparticles deposit on the top depth of around 600 nm on VACNTs with a length of 4.6μm,the cell shows the highest performance,compared with others with various lengths of VACNTs.It delivers a maximum power output of 1.61 W cm^(-2)(H_(2)/O_(2),150 k Pa)and 0.79 W cm^(-2)(H_(2)/Air,150 k Pa)at Pt loading of 50μg cm^(-2),exceeding most of previously reported PEMFCs with Pt loading of<100μg cm^(-2).Even though the Pt loading is down to 30μg cm^(-2)(1.36 W cm^(-2)),the performance is also better than 100μg cm^(-2)(1.24 W cm^(-2))of commercial Pt/C,and presents better stability.This excellent performance is critical attributed to the ordered hydrophobic region providing sufficient mass passages to facilitate the fast water drainage at high current densities.This work gives a new understanding for oxygen reduction reaction occurred in VACNTs-based ordered electrodes,demonstrating the most possibility to achieve a substantial reduction in Pt loading<100μg cm^(-2) without sacrificing in performance. 展开更多
关键词 Proton exchange membrane fuel cells Order-structured catalyst layer Vertically aligned carbon nanotubes Ultra-low Pt loading Membrane electrode assembly
下载PDF
Flexoelectric-Induced Voltage Shift in Hybrid Aligned Nematic Liquid Crystal Cell 被引量:1
15
作者 邢红玉 叶文江 +1 位作者 张志东 宣丽 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第11期939-942,共4页
Flexoelectric-induced voltage shift in a weak anchoring hybrid aligned nematic fiquid crystai cell is investigated theoretically. Based on the elastic theory of liquid crystal and the variation method, the equations f... Flexoelectric-induced voltage shift in a weak anchoring hybrid aligned nematic fiquid crystai cell is investigated theoretically. Based on the elastic theory of liquid crystal and the variation method, the equations for the bulk and the boundary of the cell are derived. By computer simulation, the dependence of the shift voltage on the sum of the ttexoelectric coefficients and the anchoring energy strength is obtained. As a result, a novel method to determine the sum of the flexoelectric coefficients by measuring the shift voltage is put forward. 展开更多
关键词 flexoelectric voltage shift hybrid aligned nematic shift voltage variation method
下载PDF
A biomimetic basementmembrane consisted of hybrid aligned nanofibers andmicrofibers with immobilized collagen IV and laminin for rapid endothelialization 被引量:1
16
作者 Chenglong Yu Guoping Guan +3 位作者 Stefanie Glas Lu Wang Zhutong Li Lih-Sheng Turng 《Bio-Design and Manufacturing》 SCIE EI CSCD 2021年第2期171-189,共19页
Rapid formation of a continuous endothelial cell(EC)monolayer with healthy endothelium function on the luminal surface of vascular implants is imperative to improve the longtime patency of small-diameter vascular impl... Rapid formation of a continuous endothelial cell(EC)monolayer with healthy endothelium function on the luminal surface of vascular implants is imperative to improve the longtime patency of small-diameter vascular implants.In the present study,we combined the contact guidance effects of aligned nanofibers,which enhance EC adhesion and proliferation because of its similar fiber scale with native vascular basement membranes,and aligned microfibers,which could induce EC elongation effectively and allow ECs infiltration.It was followed by successive immobilization of collagen IV and laminin to fabricate a biomimetic basement membrane(BBM)with structural and compositional biomimicry.The hemolysis assay and platelet adhesion results showed that the BBM exhibited excellent hemocompatibility.Meanwhile,the adhered human umbilical vein endothelial cells(HUVECs)onto theBBMaligned along the orientation of the microfibers with an elongated morphology,and the data demonstrated that the BBM showed favorable effects on EC attachment,proliferation,and viability.The oriented EC monolayer formed on the BBM exhibited improved antithrombotic capability as indicated by higher production of nitric oxide and prostacyclin(PGI2).Furthermore,fluorescence images indicated that HUVECs could infiltrate into the BBM,implying theBBM’s ability to enhance transmural endothelialization.Hence,theBBMpossessed the properties to regulate ECbehaviors and allow transmural ingrowth,demonstrating the potential to be applied as the luminal surface of small-diameter vascular implants for rapid endothelialization. 展开更多
关键词 Biomimetic basement membranes aligned electrospun fibers Surface modification ENDOTHELIALIZATION Anti-thrombogenicity Transmural ingrowth
下载PDF
Electrical and Piezoresistive Properties of Steel Fiber Cement-based Composites Aligned by a Magnetic Field 被引量:1
17
作者 LIU Liyuan XU Jinxia +2 位作者 WANG Yang YIN Tianjiao CHU Hongqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第2期229-240,共12页
Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the el... Directionally distributed steel fiber cement-based composites(SFCCs)were prepared by magnetic field(MF)induction technology.The orientation factor of steel fibers in the as-obtained SFCCs was determined.Besides,the electrical resistivity and piezoresistive responses in two directions of aligned steel fiber cement-based composites,i e,parallel and perpendicular to MF,were measured.The effects of several variables,eg,steel fiber content,curing age,humidity,and temperature,on anisotropic electrical property were studied.The cyclic and failure piezoresistive responses in different directions were tested.It is found that the aligned steel fibers in the as-obtained SFCCs have a high orientation factor more than 0.88.Besides,SFCCs with aligned steel fibers exhibit an obvious anisotropic conductivity and piezoelectric sensitivity.The electrical conductivity of SFCCs with aligned steel fibers is less affected by temperature and humidity.At the steel fiber content of 2.5wt%,the piezoelectric sensitivity coefficient of SFCCs in the direction parallel to MF has the highest value of 324.14.In addition,the piezoresistive properties of SFCCs with aligned steel fibers in the direction parallel to MF indicate excellent sensitivity and stability under cyclic loading and monotonic loading. 展开更多
关键词 electrical resistivity aligned steel fiber PIEZORESISTIVITY cement-based composites
下载PDF
A comparison of the field emission characteristics of vertically aligned graphene sheets grown on different SiC substrates 被引量:1
18
作者 陈莲莲 郭丽伟 +3 位作者 刘宇 李治林 黄郊 芦伟 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期567-570,共4页
The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with t... The field emission (FE) properties of vertically aligned graphene sheets (VAGSs) grown on different SiC substrates are reported. The VAGSs grown on nonpolar SiC (10-10) substrate show an ordered alignment with the graphene basal plane-parallel to each other, and show better FE features, with a lower turn-on field and a larger field enhancement factor. The VAGSs grown on polar SiC (000-1 ) substrate reveal a random petaloid-shaped arrangement and stable current emission over 8 hours with a maximum emission current fluctuation of only 4%. The reasons behind the differing FE characteristics of the VAGSs on different SiC substrates are analyzed and discussed. 展开更多
关键词 field emission vertically aligned graphene sheets SiC substrate
下载PDF
A general surface-treatment-free approach to fabrication of alignment layers using a super-aligned carbon nanotube film template 被引量:1
19
作者 付伟琦 魏洋 +4 位作者 朱峰 刘亮 姜开利 李群庆 范守善 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第8期632-635,共4页
We develop a general approach to the fabrication of films with unidirectional grooves, such as silicon nitride, silicon dioxide and aluminium oxide, in which the surface is not required to be treated. Super-aligned ca... We develop a general approach to the fabrication of films with unidirectional grooves, such as silicon nitride, silicon dioxide and aluminium oxide, in which the surface is not required to be treated. Super-aligned carbon nanotube (SACNT) film may be used as a template and as sacrificial layer, which is subsequently removed by heating in an atmosphere of air. The unidirectional morphology of the SACNT film turns into a desired film, which is found to possess the ability to align liquid crystal molecules. This approach also features high efficiency, low cost and easy scaling-up for mass production. 展开更多
关键词 super-aligned carbon nanotube film alignment layer TEMPLATE
下载PDF
Freeze-assisted Tape Casting of Vertically Aligned MXene Films for High Rate Performance Supercapacitors 被引量:2
20
作者 Wenji Yang Jae Jong Byun +5 位作者 Jie Yang Francis Peter Moissinac Yudong Peng GustavoTontini Robert A.W.Dryfe Suelen Barg 《Energy & Environmental Materials》 2020年第3期380-388,共9页
Conventional electrode preparation techniques of supercapacitors such as tape casting or vacuum filtration often lead to the restacking or agglomeration of twodimensional(2 D)materials.As a result,tortuous paths are c... Conventional electrode preparation techniques of supercapacitors such as tape casting or vacuum filtration often lead to the restacking or agglomeration of twodimensional(2 D)materials.As a result,tortuous paths are created for the electrolyte ions and their adsorption onto the surfaces of the active materials can be prevented.Consequently,maintaining high rate performance while increasing the thickness of electrodes has been a challenge.Herein,a facile freeze-assisted tape-casting(Fa TC)method is reported for the scalable fabrication of flexible MXene(Ti3C2Tx)supercapacitor electrode films of up to 700μm thickness,exhibiting homogeneous ice-template microstructure composed of vertically aligned MXene walls within lamellar pores.The efficient ion transport created by the internal morphology allows for fast electrochemical charge–discharge cycles and near thickness-independent performance at up to 3000 m V s-1 for films of up to 300μm in thickness.By increasing the scan rate from 20 to 10,000 m V s-1,Ti3C2Tx films of 150μm in thickness sustain 50%of its specific capacitance(222.9 F g-1).When the film thickness is doubled to 300μm,its capacitance is still retained by 60%(at 213.3 F g-1)when the scan rate is increased from 20 to3000 m V s-1,with a capacitance retention above 97.7%for over 14,000 cycles at10 A g-1.They also showed a remarkably high gravimetric and areal power density of 150 k W kg-1 at 1000 A g-1 and 667 m W cm-2 at 4444 m A cm-2,respectively.Fa TC has the potential to provide industry with a viable way to fabricate electrodes formed from 2 D materials on a large scale,while providing promising performance for use in a wide range of applications,such as flexible electronics and wearable energy storage devices. 展开更多
关键词 freeze-assisted tape casting MXene SUPERCAPACITORS thickness-independent capacitance vertically aligned electrodes
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部