Ultra trace determination of lantanum(Ⅲ) has been studied by adsorptive stripping voltammetry methods using an alizarin S as complexing agent and carbon paste electrode as working electrode. The electrode was made ...Ultra trace determination of lantanum(Ⅲ) has been studied by adsorptive stripping voltammetry methods using an alizarin S as complexing agent and carbon paste electrode as working electrode. The electrode was made from mixed of carbon powder and paraffin in micropipette tip with diameter of 4 ram. This method consists of two steps. The first step is the formation and adsorptive accumulation of metal ion with chelator at the electrode surface. The second step is stripping the complex from the electrode surface into the solution. The stripping step generates current which is recorded as voltammogram. The optimum conditions of instrumental parameter obtained were accumulation potential of 600 mV, accumulation time of 120 seconds, and pH of solution of 5.5. In this research, the limit detection obtained was 2.3348 × 10^-12 M (3.24× 10^-11μg/L) with sensitivity of 16.52 (nA/10u M) and the precision of standard solution of La3+ with concentration of 2 × 10^-12 M, 4× 10^-12 M, 6 × 10^-12 M, 8 × 10^-12 M, and 10 × 10^-12M were 3.50%, 9.88%, 7.19%, 7.48% and 1.85% respectively. The linierity of this method is very good with correlation coefficient is 0.9780. Recovery percentage from La3+ with concentration of 6× 10^-12 M and 10 × 10^-12 M are 108.84% and 91.51%, respectively.展开更多
Black rockfish Sebastes schlegelii juveniles (30-40 mm total length) were immersed in a range of calcein (CAL) solutions at concentrations ranging from 50 to 250 mg/L and alizarin red S (ARS) solutions at concen...Black rockfish Sebastes schlegelii juveniles (30-40 mm total length) were immersed in a range of calcein (CAL) solutions at concentrations ranging from 50 to 250 mg/L and alizarin red S (ARS) solutions at concentrations ranging from 100 to 500 mg/L in filtered seawater (salinity 30) for 24 h. Fluorescent marks were detected in otoliths (sagittae, asteriscus), scales, fin rays (dorsal, pectoral, ventral, anal, and caudal fin rays), and fin spines (dorsal, ventral, and anal fin spines) after a 60-d growth experiment. With the exception of 50-100 rng/L CAL, acceptable marks were produced in the otoliths and fin spines by all concentrations of CAL and ARS. In particular, marks were clearly visible under normal light in the sagittae, asteriscus, and fin spines offish immersed in 200 500 mg/L, 300-500 rag/L, and 200-500 mg/LARS, respectively. Scales and fin rays had acceptable marks at much higher concentrations (≥50 mg/L CAL, ≥300 mg/L ARS for scales and ≥50 mg/L CAL,≥200 mg/L ARS for fin rays). The mark quality was highest (i.e., acceptable marks were observed in all sampled structures after immersion marking) in fish immersed in 150-250 mg/L CAL or 300-500 mg/LARS. In addition, there was no significant difference in survival and growth of marked fish compared with controls 60 d post-marking (P〉0.05).展开更多
In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)...In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)and Methyl Orange(MO)) and the cationic dyes(Neutral Red(NR), Fuchsin Basic(FB), Methylene Blue(MB),and Safranine T(ST)) has been evaluated. The results clearly reveal a significant selectivity towards anionic dyes. Such an observation agrees with a plethora of reports of UiO-66 superior affinity towards other anionic species(Floride, PO_4^(3-), Diclofenac sodium, Methylchlorophenoxy-propionic acid, Phenols, CrO_4^(2-), SeO_3^(2-), and AsO_4^-). The adsorption process of ARS as an example has been optimized using the central composite design(CCD). The resultant statistical model indicates a crucial effect of both pH and sorbent mass. The optimum conditions were determined to be initial dye concentration 11.82 mg.L^(-1), adsorbent amount 0.0248 g, shaking time of 36 min and pH 2. The adsorption process proceeds via pseudo-second order kinetics(R^2= 0.999). The equilibrium data were fit to Langmuir and Tempkin models(R^2= 0.999 and 0.997 respectively). The results reveal an exceptional removal for the anionic dye(Alizarin Red S.) with a record adsorption capacity of400 mg·g^(-1). The significantly high adsorption capacity of UiO-66 towards ARS adds further evidence to the recently reported exceptional performance of MOFs in pollutants removal from water.展开更多
文摘Ultra trace determination of lantanum(Ⅲ) has been studied by adsorptive stripping voltammetry methods using an alizarin S as complexing agent and carbon paste electrode as working electrode. The electrode was made from mixed of carbon powder and paraffin in micropipette tip with diameter of 4 ram. This method consists of two steps. The first step is the formation and adsorptive accumulation of metal ion with chelator at the electrode surface. The second step is stripping the complex from the electrode surface into the solution. The stripping step generates current which is recorded as voltammogram. The optimum conditions of instrumental parameter obtained were accumulation potential of 600 mV, accumulation time of 120 seconds, and pH of solution of 5.5. In this research, the limit detection obtained was 2.3348 × 10^-12 M (3.24× 10^-11μg/L) with sensitivity of 16.52 (nA/10u M) and the precision of standard solution of La3+ with concentration of 2 × 10^-12 M, 4× 10^-12 M, 6 × 10^-12 M, 8 × 10^-12 M, and 10 × 10^-12M were 3.50%, 9.88%, 7.19%, 7.48% and 1.85% respectively. The linierity of this method is very good with correlation coefficient is 0.9780. Recovery percentage from La3+ with concentration of 6× 10^-12 M and 10 × 10^-12 M are 108.84% and 91.51%, respectively.
基金Supported by the Special Fund for Agro-scientific Research in the Public Interest(No.201003068)the National Natural Science Foundation of China(Nos.31172447,41176117)
文摘Black rockfish Sebastes schlegelii juveniles (30-40 mm total length) were immersed in a range of calcein (CAL) solutions at concentrations ranging from 50 to 250 mg/L and alizarin red S (ARS) solutions at concentrations ranging from 100 to 500 mg/L in filtered seawater (salinity 30) for 24 h. Fluorescent marks were detected in otoliths (sagittae, asteriscus), scales, fin rays (dorsal, pectoral, ventral, anal, and caudal fin rays), and fin spines (dorsal, ventral, and anal fin spines) after a 60-d growth experiment. With the exception of 50-100 rng/L CAL, acceptable marks were produced in the otoliths and fin spines by all concentrations of CAL and ARS. In particular, marks were clearly visible under normal light in the sagittae, asteriscus, and fin spines offish immersed in 200 500 mg/L, 300-500 rag/L, and 200-500 mg/LARS, respectively. Scales and fin rays had acceptable marks at much higher concentrations (≥50 mg/L CAL, ≥300 mg/L ARS for scales and ≥50 mg/L CAL,≥200 mg/L ARS for fin rays). The mark quality was highest (i.e., acceptable marks were observed in all sampled structures after immersion marking) in fish immersed in 150-250 mg/L CAL or 300-500 mg/LARS. In addition, there was no significant difference in survival and growth of marked fish compared with controls 60 d post-marking (P〉0.05).
文摘In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)and Methyl Orange(MO)) and the cationic dyes(Neutral Red(NR), Fuchsin Basic(FB), Methylene Blue(MB),and Safranine T(ST)) has been evaluated. The results clearly reveal a significant selectivity towards anionic dyes. Such an observation agrees with a plethora of reports of UiO-66 superior affinity towards other anionic species(Floride, PO_4^(3-), Diclofenac sodium, Methylchlorophenoxy-propionic acid, Phenols, CrO_4^(2-), SeO_3^(2-), and AsO_4^-). The adsorption process of ARS as an example has been optimized using the central composite design(CCD). The resultant statistical model indicates a crucial effect of both pH and sorbent mass. The optimum conditions were determined to be initial dye concentration 11.82 mg.L^(-1), adsorbent amount 0.0248 g, shaking time of 36 min and pH 2. The adsorption process proceeds via pseudo-second order kinetics(R^2= 0.999). The equilibrium data were fit to Langmuir and Tempkin models(R^2= 0.999 and 0.997 respectively). The results reveal an exceptional removal for the anionic dye(Alizarin Red S.) with a record adsorption capacity of400 mg·g^(-1). The significantly high adsorption capacity of UiO-66 towards ARS adds further evidence to the recently reported exceptional performance of MOFs in pollutants removal from water.