This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed ...This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.展开更多
Heavy metal (loid)(HM) accumulation in the soil and the HM spatiotemporal distribution have important implication for soil pollution prevention and remediation. The present study investigated the concentrations and sp...Heavy metal (loid)(HM) accumulation in the soil and the HM spatiotemporal distribution have important implication for soil pollution prevention and remediation. The present study investigated the concentrations and spatiotemporal distributions of lead (Pb), mercury (Hg), cadmium (Cd), chromium (Cr) and arsenic (As) in the topsoil of a coal chemical plant in Ningxia Aulonomous region (Ningxia), China. Topsoil samples (/?= 153) were obtained using the checkerboard method, and the HM concentrations were determined. The soil residual rates of the five HMs were measured with leaching experinients and were applied in a soil environmental capacity model to predict the quarHitiHive variation of the HM concentrations. The predicted results were employed to estimate the HM spatiotemporal distribution within 2() years with the Kriging technique. The number of sampling sites, where all five HM concentratio ns exceed their corresponding background values in Ningxia, would be increased from 0 to 90% within 1() years of the plant operation. In addition, Pb and Cd were distributed along the traffic routes. Mercury and As were distributed near fuel gas emission vents. Chromium was mainly accumulated in slag dumps. The study may provide the theoretical and practical foun d at ion for future HM pollution control in coal chemical plants.展开更多
Because of the rapid development of industrial processes, increased urban pollution and agricultural chemicals applied in recent years, heavy metal(loid) pollution in soil has been very serious, and there is an urgent...Because of the rapid development of industrial processes, increased urban pollution and agricultural chemicals applied in recent years, heavy metal(loid) pollution in soil has been very serious, and there is an urgent need for fast and efficient removal of heavy metal(loid) pollution. Currently, environmental microorganisms are always used to perform biological alteration or improvement of soils and sewage. Using functional microorganisms that are resistant to toxic heavy metal(loid) ions for alteration and transformation of heavy metal(loid)s in ionic form is an effective measure for microbial remediation of heavy metal(loid)contaminated soil. This paper reviewed the microbial remediation mechanism of heavy metal(loid) contaminated soils, and the approaches for breeding bacteria those can be used for highly efficient removal of heavy metal(loid)s, as well as the application examples of microbial remediation and transformation of heavy metal(loid) contaminated soil, and finally described the future trends and further research work of heavy metal(loid) contaminated soils by microbial remediation.展开更多
Chifeng is a concentrated mining area for non-ferrous metal minerals,as well as a key prevention and control area for heavyduty enterprises.This situation necessitates an efective ecological and human health risk asse...Chifeng is a concentrated mining area for non-ferrous metal minerals,as well as a key prevention and control area for heavyduty enterprises.This situation necessitates an efective ecological and human health risk assessment of heavy metal(loid)s driven by the wide distribution of metal ore processing,mining,and smelting factories in Hexigten Banner and Bairin Left Banner.We conducted surveys to assess the levels of heavy metal(loid)s(Cr,As,Pb,Cd,and Hg)in the topsoil and groundwater of the areas.The results indicated that the concentrations of As,Cd,and Pb in partial soil samples exceeded the environmental quality standards of Grade II.Based on contamination assessments,such as geoaccumulation indices and pollution indices,we inferred that Cd,Pb,and As were primary pollutants in topsoil.Potential ecological risks when considered as part of the average risk indices(RI)are up to 1626.40 and 2818.76,respectively,in the two areas.Comparative analysis revealed that Cd posed a very high potential ecological risk,followed by As.Moreover,the evaluation showed that the three exposure pathways of carcinogenic and non-carcinogenic risk followed a descending order:inhalation>ingestion>dermal contact,except for Pb.Arsenic in topsoil posed a potential non-carcinogenic risk to human health,while there were no adverse efects of As in groundwater.In addition,the average total carcinogenic risk for As in the two areas,as well as the risk of Pb in the topsoil of Bairin Left Banner and all the fve heavy metal(loid)s in groundwater,exceeded human tolerance.Pb–Zn mines caused higher human health risks.In addition,the tandem contamination of heavy metal(loid)s in soil and groundwater was not obvious.This research study provides a basis for pollution remediation to control heavy industry-induced ecological and health risks of heavy metal(loid)s.展开更多
Global ecosystems and public health have been greatly impacted by the accumulation of heavy metal(loid)s in water.Source-specific risk apportionment is needed to prevent and manage potential groundwater contamination ...Global ecosystems and public health have been greatly impacted by the accumulation of heavy metal(loid)s in water.Source-specific risk apportionment is needed to prevent and manage potential groundwater contamination with heavy metal(loid)s.The heavy metal(loid)s contamination status,water quality,ecological risk,and health risk apportionment of the Shule River Basin groundwater are poorly understood.Therefore,field sampling was performed to explore the water quality and risk of heavy metal(loid)s in the groundwater of the Shule River Basin in northwestern China.A total of 96 samples were collected from the study area to acquire data for water quality and heavy metal(loid)s risk.There was noticeable accumulation of ferrum in the groundwater of the Shule River Basin.The levels of pollution were considered to be moderately low,as evaluated by the degree of contamination,heavy metal evaluation index,heavy metal pollution index,and Nemerow pollution index.The ecological risks were also low.However,an assessment of the water quality index revealed that only 58.34%of the groundwater samples had good water quality.The absolute principal component scores-multiple linear regression model was more suited for this study area than the positive matrix factorization model.There were no obvious noncarcinogenic or carcinogenic concerns for all types of receptors according to the values of the total hazard index and total carcinogenic risk.The human activities and the initial geological environment factor(65.85%)was the major source of noncarcinogenic risk(residential children:87.56%;residential adults:87.52%;recreational children:86.77%;and recreational adults:85.42%),while the industrial activity factor(16.36%)was the major source of carcinogenic risk(residential receptors:87.96%;and recreational receptors:68.73%).These findings provide fundamental and crucial information for reducing the health issues caused by heavy metal(loid)s contamination of groundwater in arid areas.展开更多
The anthill soil is used by hypertensive elderly and teenagers from Oshikoto region (Namibia) and many of them testified stabilization of their blood pressure to normal after consuming the anthill soil-derived aqueous...The anthill soil is used by hypertensive elderly and teenagers from Oshikoto region (Namibia) and many of them testified stabilization of their blood pressure to normal after consuming the anthill soil-derived aqueous extracts. This study therefore investigated and/or assessed the physicochemical parameters, the contents of some metal(loid)s (and their associated potential health risks) and the qualitative composition of bioactive compounds of this anthill soil. The homogenous soil sample collected from various anthill soils in the Oshikoto region was used to obtain the measurements of physiochemical parameters. The elemental contents were determined (using an Inductively Coupled Plasma Optical Emission Spectrophotometer) after acid digestion in accordance with the EPA method 350B and their potential health risk assessments were performed. Methanol, aqueous methanol, and aqueous-based extracts were generated via maceration extraction process prior to the screening of bioactive compounds using standard diagnostic assays. The oxidation reduction potential (164.4 ± 16.6 mV) was the only physicochemical parameter whose value was within the World Health Organization limits for drinking water whereas, total dissolved solids (23 ± 5.5 mg/L), electrical conductivity (44 ± 10.1 uS/cm) and pH (5.35 ± 0.33) were out of specifications. Phenolic compounds, flavonoids, terpenoids, and cardiac glycosides were present in anthill soil (with respect to the extractants used) to which its antihypertensive properties can be attributed in addition to some of the studied mineral components. With respect to the pH, TDS and EC, and the contents of most metal(loid)s in relation to their health risk assessment values, the results suggest that aqueous extracts derived from this anthill soil can be deemed unsuitable for human consumption.展开更多
The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected fr...The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected from the Bandama, Comoé, and Bia Rivers in south and south eastern Côte d’Ivoire (West Africa), were analyzed for total metal concentrations and chemical speciation. The results showed that the river sediments were considerably contaminated by Cd and moderately contaminated by As, Cu, Pb, and Zn. Significant spatial variations were observed among the stations but not between the rivers. Metals Cd and Cu were likely to cause more ecological risks. The speciation analysis unravelled that the metal(loid)s partitioned mainly in the residual fraction, with the potential mobile fraction varying from 14% to 28%. The study calls for establishment of strict policies relative to the application of fertilizers and agrochemicals and mining activities to protect the environment and human health risks.展开更多
基金supported by Project of Chongqing Science and Technology Bureau (cstc2022jxjl0005)。
文摘This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.
文摘Heavy metal (loid)(HM) accumulation in the soil and the HM spatiotemporal distribution have important implication for soil pollution prevention and remediation. The present study investigated the concentrations and spatiotemporal distributions of lead (Pb), mercury (Hg), cadmium (Cd), chromium (Cr) and arsenic (As) in the topsoil of a coal chemical plant in Ningxia Aulonomous region (Ningxia), China. Topsoil samples (/?= 153) were obtained using the checkerboard method, and the HM concentrations were determined. The soil residual rates of the five HMs were measured with leaching experinients and were applied in a soil environmental capacity model to predict the quarHitiHive variation of the HM concentrations. The predicted results were employed to estimate the HM spatiotemporal distribution within 2() years with the Kriging technique. The number of sampling sites, where all five HM concentratio ns exceed their corresponding background values in Ningxia, would be increased from 0 to 90% within 1() years of the plant operation. In addition, Pb and Cd were distributed along the traffic routes. Mercury and As were distributed near fuel gas emission vents. Chromium was mainly accumulated in slag dumps. The study may provide the theoretical and practical foun d at ion for future HM pollution control in coal chemical plants.
文摘Because of the rapid development of industrial processes, increased urban pollution and agricultural chemicals applied in recent years, heavy metal(loid) pollution in soil has been very serious, and there is an urgent need for fast and efficient removal of heavy metal(loid) pollution. Currently, environmental microorganisms are always used to perform biological alteration or improvement of soils and sewage. Using functional microorganisms that are resistant to toxic heavy metal(loid) ions for alteration and transformation of heavy metal(loid)s in ionic form is an effective measure for microbial remediation of heavy metal(loid)contaminated soil. This paper reviewed the microbial remediation mechanism of heavy metal(loid) contaminated soils, and the approaches for breeding bacteria those can be used for highly efficient removal of heavy metal(loid)s, as well as the application examples of microbial remediation and transformation of heavy metal(loid) contaminated soil, and finally described the future trends and further research work of heavy metal(loid) contaminated soils by microbial remediation.
基金the National Natural Science Foundation of China(No.42072284,No.42027801,No.41877186)the National Key R&D Program of China(2021YFC2902004)+1 种基金the Major Science and Technology Projects of Inner Mongolia Autonomous Region(2020ZD0020-4)the Fundamental Research Funds for the Central Universities(2022YQSH01,2020YJSSH01,2021YJSSH01)。
文摘Chifeng is a concentrated mining area for non-ferrous metal minerals,as well as a key prevention and control area for heavyduty enterprises.This situation necessitates an efective ecological and human health risk assessment of heavy metal(loid)s driven by the wide distribution of metal ore processing,mining,and smelting factories in Hexigten Banner and Bairin Left Banner.We conducted surveys to assess the levels of heavy metal(loid)s(Cr,As,Pb,Cd,and Hg)in the topsoil and groundwater of the areas.The results indicated that the concentrations of As,Cd,and Pb in partial soil samples exceeded the environmental quality standards of Grade II.Based on contamination assessments,such as geoaccumulation indices and pollution indices,we inferred that Cd,Pb,and As were primary pollutants in topsoil.Potential ecological risks when considered as part of the average risk indices(RI)are up to 1626.40 and 2818.76,respectively,in the two areas.Comparative analysis revealed that Cd posed a very high potential ecological risk,followed by As.Moreover,the evaluation showed that the three exposure pathways of carcinogenic and non-carcinogenic risk followed a descending order:inhalation>ingestion>dermal contact,except for Pb.Arsenic in topsoil posed a potential non-carcinogenic risk to human health,while there were no adverse efects of As in groundwater.In addition,the average total carcinogenic risk for As in the two areas,as well as the risk of Pb in the topsoil of Bairin Left Banner and all the fve heavy metal(loid)s in groundwater,exceeded human tolerance.Pb–Zn mines caused higher human health risks.In addition,the tandem contamination of heavy metal(loid)s in soil and groundwater was not obvious.This research study provides a basis for pollution remediation to control heavy industry-induced ecological and health risks of heavy metal(loid)s.
基金This work was supported by the Kunlun Talent Action Plan of Qinghai Province(E140 WX42)National Natural Science Foundation of China(52179026)Strategy for Water Resource Security in Yellow River Sources。
文摘Global ecosystems and public health have been greatly impacted by the accumulation of heavy metal(loid)s in water.Source-specific risk apportionment is needed to prevent and manage potential groundwater contamination with heavy metal(loid)s.The heavy metal(loid)s contamination status,water quality,ecological risk,and health risk apportionment of the Shule River Basin groundwater are poorly understood.Therefore,field sampling was performed to explore the water quality and risk of heavy metal(loid)s in the groundwater of the Shule River Basin in northwestern China.A total of 96 samples were collected from the study area to acquire data for water quality and heavy metal(loid)s risk.There was noticeable accumulation of ferrum in the groundwater of the Shule River Basin.The levels of pollution were considered to be moderately low,as evaluated by the degree of contamination,heavy metal evaluation index,heavy metal pollution index,and Nemerow pollution index.The ecological risks were also low.However,an assessment of the water quality index revealed that only 58.34%of the groundwater samples had good water quality.The absolute principal component scores-multiple linear regression model was more suited for this study area than the positive matrix factorization model.There were no obvious noncarcinogenic or carcinogenic concerns for all types of receptors according to the values of the total hazard index and total carcinogenic risk.The human activities and the initial geological environment factor(65.85%)was the major source of noncarcinogenic risk(residential children:87.56%;residential adults:87.52%;recreational children:86.77%;and recreational adults:85.42%),while the industrial activity factor(16.36%)was the major source of carcinogenic risk(residential receptors:87.96%;and recreational receptors:68.73%).These findings provide fundamental and crucial information for reducing the health issues caused by heavy metal(loid)s contamination of groundwater in arid areas.
文摘The anthill soil is used by hypertensive elderly and teenagers from Oshikoto region (Namibia) and many of them testified stabilization of their blood pressure to normal after consuming the anthill soil-derived aqueous extracts. This study therefore investigated and/or assessed the physicochemical parameters, the contents of some metal(loid)s (and their associated potential health risks) and the qualitative composition of bioactive compounds of this anthill soil. The homogenous soil sample collected from various anthill soils in the Oshikoto region was used to obtain the measurements of physiochemical parameters. The elemental contents were determined (using an Inductively Coupled Plasma Optical Emission Spectrophotometer) after acid digestion in accordance with the EPA method 350B and their potential health risk assessments were performed. Methanol, aqueous methanol, and aqueous-based extracts were generated via maceration extraction process prior to the screening of bioactive compounds using standard diagnostic assays. The oxidation reduction potential (164.4 ± 16.6 mV) was the only physicochemical parameter whose value was within the World Health Organization limits for drinking water whereas, total dissolved solids (23 ± 5.5 mg/L), electrical conductivity (44 ± 10.1 uS/cm) and pH (5.35 ± 0.33) were out of specifications. Phenolic compounds, flavonoids, terpenoids, and cardiac glycosides were present in anthill soil (with respect to the extractants used) to which its antihypertensive properties can be attributed in addition to some of the studied mineral components. With respect to the pH, TDS and EC, and the contents of most metal(loid)s in relation to their health risk assessment values, the results suggest that aqueous extracts derived from this anthill soil can be deemed unsuitable for human consumption.
基金Project(2019YFC1803601)supported by the National Key Research and Development Program of ChinaProject(42177392)supported by the National Natural Science Foundation of China+1 种基金Project(RG 45/2022-2023R)supported by the Research and Development Office,the Education University of Hong Kong,ChinaProject(IRS-42023)supported by the Dean's Research Fund of Education University of Hong Kong,China。
文摘The economy of West African countries is mainly based on agriculture. However, the trace metal(loid)s contamination status in rivers is relatively unknown in the region. In this work, 45 surface sediments collected from the Bandama, Comoé, and Bia Rivers in south and south eastern Côte d’Ivoire (West Africa), were analyzed for total metal concentrations and chemical speciation. The results showed that the river sediments were considerably contaminated by Cd and moderately contaminated by As, Cu, Pb, and Zn. Significant spatial variations were observed among the stations but not between the rivers. Metals Cd and Cu were likely to cause more ecological risks. The speciation analysis unravelled that the metal(loid)s partitioned mainly in the residual fraction, with the potential mobile fraction varying from 14% to 28%. The study calls for establishment of strict policies relative to the application of fertilizers and agrochemicals and mining activities to protect the environment and human health risks.