期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Modification of Glucose Molecules with Alkali Elements as a Method to Dissolve Cancer Cells
1
作者 Eue-Jin Jeong 《Journal of Cancer Therapy》 CAS 2022年第7期430-439,共10页
Cancer cells are irresponsive to the central control of the cell growth mechanisms. It is difficult to turn on the responsive mechanism of cancer cells because the cells are completely dissociated from the central com... Cancer cells are irresponsive to the central control of the cell growth mechanisms. It is difficult to turn on the responsive mechanism of cancer cells because the cells are completely dissociated from the central command and on their own in terms of cell division and growth. Precisely, this is the reason why they are at risk to the health of humans and/or any biological entities. Instead of trying to reconnect the central command of the growth control mechanism to cancer cells that are already out of the range, we present a method for using the cancer cell’s own irresponsive and uncontrolled growth mechanism to their disadvantage and destroy the cancer cells. We found that this is achievable in an atomic/molecular level study of the glucose molecule, which is the primary food source used for growth and energy generation by all cells in the body, including cancer cells. Testimonials of the clinical trial of the supplement provide proof of dramatic recovery from the advanced stage of cancer in seven days. 展开更多
关键词 GLUCOSE alkali Element Glucose Modification Cancer Cell Dissolution Exothermic Reaction
下载PDF
Hydro-geochemistry of groundwater and surface water in Dschang town(West Cameroon):Alkali and alkaline-earth elements ascertain lithological and anthropogenic constraints 被引量:1
2
作者 Yemeli Elida Joelle Temgoua Emile +5 位作者 Kengni Lucas Ambrosi Jean-Paul Momo-nouazi Mathieu Silatsa-Tedou Francis Brice Wamba Franck Robean Tchakam-Kamtchueng Brice 《Journal of Groundwater Science and Engineering》 2021年第3期212-224,共13页
The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected... The study aims to identify a suitable site for open and bore well in a farmhouseusing ground magnetic survey in south India.It also aims to define depth to granitoid and structural elements which traverse the selected area.Magnetic data(n=84)measured,processed and interpreted as qualitative and quantitatively.The results of total magnetic intensities indicate that the area is composed of linear magnetic lows trending NE-SW direction and circular to semi-circular causative bodies.The magnetic values ranged from-137 nT to 2345 nT with a mean of 465 nT.Reduction to equator shows significant shifting of causative bodies in the southern and northern directions.Analytical signal map shows exact boundary of granitic bodies.Cosine directional filter has brought out structural element trending NE-SW direction.Results of individual profile brought to light structurally weak zone between 90 m and 100 m in all the profile lines.Sudden decrease of magnetic values from 2042 nT to 126 nT noticed in profile line 6 between 20 m and 30 m indicates fault occurrence.Magnetic breaks obtained from these maps were visualized,interpreted and identified two suitable sites for open and bore well.Radially averaged power spectrum estimates depth of shallow and deep sources in 5 m and 50 m,respectively.Euler method has also been applied to estimate depth of granitoid and structural elements using structural indexes 0,1,2,and 3 and found depth ranges from<10 m to>90 m.Study indicates magnetic method is one of the geophysical methods suitable for groundwater exploration and site selection for open and borewells. 展开更多
关键词 alkali/alkaline-earth elements Groundwater and surface water Geochemical anomaly Anthropogenic impact Dschang-Cameroon
下载PDF
Advances in CIGS thin film solar cells with emphasis on the alkali element post-deposition treatment
3
作者 Chenchen Zhao Shen Yu +10 位作者 Wei Tang Xinye Yuan Hongfei Zhou Tongqing Qi Xue Zheng De Ning Ming Ma Junyi Zhu Jie Zhang Chunlei Yang Weimin Li 《Materials Reports(Energy)》 2023年第3期24-40,共17页
In the past tens of years,the power conversion efficiency of Cu(In,Ga)Se2(CIGS)has continuously improved and been one of the fastest growing photovoltaic technologies that can also help us achieve the goal of carbon e... In the past tens of years,the power conversion efficiency of Cu(In,Ga)Se2(CIGS)has continuously improved and been one of the fastest growing photovoltaic technologies that can also help us achieve the goal of carbon emissions reduction.Among several key advances,the alkali element post-deposition treatment(AlK PDT)is regarded as the most important finding in the last 10 years,which has led to the improvement of CIGS solar cell efficiency from 20.4%to 23.35%.A profound understanding of the influence of alkali element on the chemical and electrical properties of the CIGS absorber along with the underlying mechanisms is of great importance.In this review,we summarize the strategies of the alkali element doping in CIGS solar cell,the problems to be noted in the PDT process,the effects on the CdS buffer layer,the effects of different alkali elements on the structure and morphology of the CIGS absorber layer,and retrospect the progress in the CIGS solar cell with emphasis on the alkali element post deposition treatment. 展开更多
关键词 CIGS solar cells Post-deposition treatment alkali element Efficiency Absorber
下载PDF
Review on Alkali Element Doping in Cu(In,Ga)Se2 Thin Films and Solar Cells 被引量:2
4
作者 Yun Sun Shuping Lin +4 位作者 Wei Li Shiqing Cheng Yunxiang Zhang Yiming Liu Wei Liu 《Engineering》 SCIE EI 2017年第4期452-459,共8页
This paper reviews the development history of alkali element doping on Cu(In,Ga)Se2 (CIGS) solar cells and summarizes important achievements that have been made in this field. The influences of incorporation strat... This paper reviews the development history of alkali element doping on Cu(In,Ga)Se2 (CIGS) solar cells and summarizes important achievements that have been made in this field. The influences of incorporation strategies on CIG5 absorbers and device performances are also reviewed. By analyzing CIGS surface structure and electronic property variation induced by alkali fluoride (NaF and KF) post-deposition treatment (PDT), we discuss and interpret the following issues: ① The delamination of CIGS thin films induced by Na incorporation facilitates CulnSe2 formation and inhibits Ga during low-temperature co-evaporation process- es. ② The mechanisms of carrier density increase due to defect passivation by Na at grain boundaries and the surface. ③ A thinner buffer layer improves the short-circuit current without open-circuit voltage loss, This is attributed not only to better buffer layer coverage in the early stage of the chemical bath deposition process, but also to higher donor defect (Cd^+Cu) density, which is transferred from the acceptor defect (C^-cu) and strengthens the buried homojunction. ④ The KF-PDT-induced lower valence band maximum at the absorber surface reduces the recombination at the absorber/buffer interface, which improves the open-circuit voltage and the fill factor of solar cells. 展开更多
关键词 alkali elements Cu(In Ga)Se2 Thin-film solar cells Post-deposition treatment
下载PDF
Preparation of Cs-Rb-V series sulphuric acid catalyst 被引量:1
5
作者 陈振兴 杨刚 叶华 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期595-598,共4页
Cs Rb V series low temperature sulphuric acid catalyst was prepared for the first time by using carbonized mother liquor containing alkali metal salts. The results show that the conversion of SO 2 on catalyst prepared... Cs Rb V series low temperature sulphuric acid catalyst was prepared for the first time by using carbonized mother liquor containing alkali metal salts. The results show that the conversion of SO 2 on catalyst prepared directly with carbonized mother liquor could reach to 24.8% at 410?℃. If n (Na)/ n (V) was adjusted properly, the conversion of SO 2 could be increased to 35.6% at 410?℃. Refined carbonized mother liquor could make the catalytic activity even higher at low temperature, the conversion of SO 2 could be increased to 36.65% at 410?℃. The catalyst was examined with differential thermal analysis. It was found that both endothermic peaks and exothermic peaks of catalyst shifted forward obviously and the catalyst possessed higher activity at low temperature. 展开更多
关键词 sulphuric acid catalyst sulphur dioxide alkali metal element low temperature activity PROMOTER
下载PDF
Alkali and alkaline ions co-substitution of P2 sodium layered oxides for sodium ion batteries
6
作者 Yuncai Chen Maolin Yang +8 位作者 Liangtao Yang Ziwei Chen Huiyun Li Haw Jiunn Woo Shang-Sen Chi Yinguo Xiao Jun Wang Chaoyang Wang Yonghong Deng 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2023年第5期13-21,共9页
Alkali and alkaline ion substitutions enhance the electrochemical properties of P2 sodium layered oxide,while the effect on electrochemical property enhancement of alkali and alkaline ions co-substitution is still unc... Alkali and alkaline ion substitutions enhance the electrochemical properties of P2 sodium layered oxide,while the effect on electrochemical property enhancement of alkali and alkaline ions co-substitution is still unclear.In this work,the structural and electrochemical properties of the Li alkali and Mg alkaline ions co-substituted P2 layered oxide Na_(0.67)(Li_(0.5)Mg_(0.5))_(0.1)(Ni_(0.33)Mn_(0.67))_(0.9)O_(2)are investigated in detail.Compared to the pristine and single-ion substituted materials,the co-substituted material shows an enhanced cycling performance with a reversible ca-pacity of 127 mAh/g and a capacity retention of 75%over 100 cycles at 0.5C.Galvanostatic intermittent titration technique(GITT)and cyclic voltammetry(CV)results show that the Li and Mg synergistically improve the ion diffusion.Moreover,the structure stability is also improved by the Li and Mg co-substitution that is clarified by operando X-ray diffraction(XRD)measurements.These results explain the origin of the enhanced electrochemical properties of the Li/Mg co-substituted P2 layered oxides for sodium ion batteries. 展开更多
关键词 Sodium ions batteries Sodium layered oxides alkali and alkaline elements co-substitution Neutron diffraction Structural evolution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部