期刊文献+
共找到1,423篇文章
< 1 2 72 >
每页显示 20 50 100
Penetrative and migratory behavior of alkali metal in different binder based TiB_2-C composite cathodes 被引量:7
1
作者 方钊 伍小雷 +2 位作者 俞娟 李林波 朱军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1220-1230,共11页
In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolys... In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolysis process were studied by EDS and self-made modified Rapoport apparatus. The electrolysis expansion rates, the diffusion coefficients of the alkali metals and the corrosion rates of the composite cathode were also calculated and discussed. The results show that no matter what kind of binder is used, alkali metals have the same penetrative path in composite cathodes:firstly in pore, then in binder and finally in carbonaceous aggregates. K and Na penetrate into both binder and carbonaceous aggregates, which leads to the expansion of composite cathodes, and K has stronger penetration ability than Na. Electrolysis expansion rate of resin based composite cathode is smaller than that of pitch based composite cathodes, and so do the diffusion coefficient and corrosion rate. Resin based composite cathode has better resistance ability to the penetration of alkali metals than pith based composite cathode, and phenolic aldehyde based composite cathode exhibits the strongest resistance ability. The penetration rate, the diffusion coefficient of alkali metals in phenolic aldehyde based TiB2-C composite cathode and the corresponding corrosion rate are 4.72 mm/h, 2.24×10^-5 cm^2/s and 2.31 mm/a, respectively. 展开更多
关键词 aluminum electrolysis PENETRATION migration alkali metal TiB2-C composite cathode corrosion resistance
下载PDF
DFT Study of Alkali Metal Atom Adsorption on Defect-Free MgO(001)Surface 被引量:1
2
作者 徐闰 贡伟明 +2 位作者 张旭 王林军 洪峰 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第5期538-542,621,共6页
The adsorption of isolated alkali metal atoms (Li, Na, K, Rb, and Cs) on defect-free sur- face of MgO(001) has been systemically investigated with density functional theory using a pseudopotential plane-wave appro... The adsorption of isolated alkali metal atoms (Li, Na, K, Rb, and Cs) on defect-free sur- face of MgO(001) has been systemically investigated with density functional theory using a pseudopotential plane-wave approach. The adsorption energy calculated is about -0.72 eV for the lithium on top of the surface O site and about one third of this value for the other alkali metals. The relatively strong interaction of Li with the surface O can be explained by a more covalent bonding involved, evidenced by results of both the projected density of states and the charge density difference. The bonding mechanism is discussed in detail for all alkali metals. 展开更多
关键词 alkali metal atom ADSORPTION Density functional theory
下载PDF
Hydrogen storage over alkali metal hydride and alkali metal hydroxide composites
3
作者 Pei Yu Yong Shen Chua +3 位作者 Hujun Cao Zhitao Xiong Guotao Wu Ping Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期414-419,共6页
Alkali metal hydroxide and hydride composite systems contain both protic (H bonded with O) and hydridic hydrogen. The interaction of these two types of hydrides produces hydrogen. The enthalpy of dehydrogenation inc... Alkali metal hydroxide and hydride composite systems contain both protic (H bonded with O) and hydridic hydrogen. The interaction of these two types of hydrides produces hydrogen. The enthalpy of dehydrogenation increased with the increase of atomic number of alkali metals, i.e., -23 kJ/molnz for LiOH-LiH, 55.34 kJ/moln: for NaOH-NaH and 222 kJ/molH2 for KOH-KH. These thermodynamic calculation results were consistent with our experimental results. H2 was released from LiOH-LiH system during ball milling. The dehydrogenation temperature of NaOH-NaH system was about 150 ℃; whereas KOH and KH did not interact with each other during the heating process. Instead, KH decomposed by itself. In these three systems, NaOH-NaH was the only reversible hydrogen storage system, the enthalpy of dehydrogenation was about 55.65 kJ/molHz, and the corresponding entropy was ca. 101.23 J/(molHz .K), so the temperature for releasing 1.0 bar H2 was as high as 518 ℃, showing unfavorable thermodynamic properties. The activation energy for hydrogen desorption of NaOH-NaH was found to be 57.87 kJ/mol, showing good kinetic properties. 展开更多
关键词 hydrogen storage alkali metal hydroxide alkali metal hydride THERMODYNAMIC KINETIC
下载PDF
Recent progress in rechargeable alkali metal-air batteries 被引量:14
4
作者 Xin Zhang Xin-Gai Wang +1 位作者 Zhaojun Xie Zhen Zhou 《Green Energy & Environment》 SCIE 2016年第1期4-17,共14页
Rechargeable alkali metal-air batteries are considered as the most promising candidate for the power source of electric vehicles(EVs) due to their high energy density. However, the practical application of metal-air b... Rechargeable alkali metal-air batteries are considered as the most promising candidate for the power source of electric vehicles(EVs) due to their high energy density. However, the practical application of metal-air batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metal-air batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this review, we summarize the recent development of alkali metal-air batteries from four parts: metal anodes, electrolytes, air cathodes and reactant gases, wherein we highlight the important achievement in this filed. Finally problems and prospective are discussed towards the future development of alkali metal-air batteries. 展开更多
关键词 metal-air batteries alkali metal anodes Electrolytes Ionic liquids Air cathodes
下载PDF
Alkali metal cation doping of metal-organic framework for enhancing carbon dioxide adsorption capacity 被引量:6
5
作者 Yan Cao Yunxia Zhao +1 位作者 Fujiao Song Qin Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第4期468-474,共7页
Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was... Metal-organic frameworks (MOFs) have attracted much attention as adsorbents for the separation of CO2 from flue gas or natural gas. Here, a typical metal-organic framework HKUST-I(also named Cu-BTC or MOF-199) was chemically reduced by doping it with alkali metals (Li, Na and K) and they were further used to investigate their CO2 adsorption capacities. The structural information, surface chemistry and thermal behavior of the prepared adsorbent samples were characterized by X-ray powder diffraction (XRD), thermo-gravimetric analysis (TGA) and nitrogen adsorption-desorption isotherm analysis. The results showed that the CO2 storage capacity of HKUST-1 doped with moderate quantities of Li+, Na+ and K+, individually, was greater than that of unmodified HKUST-1. The highest CO2 adsorption uptake of 8.64 mmol/g was obtained with 1K-HKUST-1, and it was ca. 11% increase in adsorption capacity at 298 K and 18 bar as compared with HKUST- 1. Moreover, adsorption tests showed that HKUST-1 and 1K-HKUST-1 displayed much higher adsorption capacities of CO2 than those of N2. Finally, the adsorption/desorption cycle experiment revealed that the adsorption performance of 1K-HKUST-1 was fairly stable, without obvious deterioration in the adsorption capacity of CO2 after 10 cycles. 展开更多
关键词 metal-organic framework HKUST-1 carbon dioxide adsorption alkali metals cation doping adsorption-desorption cycles
下载PDF
A comparison study of alkali metal-doped g-C_3N_4 for visible-light photocatalytic hydrogen evolution 被引量:25
6
作者 Jing Jiang Shaowen Cao +1 位作者 Chenglong Hu Chunhua Chen 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第12期1981-1989,共9页
Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a st... Photocatalytic hydrogen production based on semiconductor photocatalysts has been considered as one of the most promising strategies to resolve the global energy shortage.Graphitic carbon nitride(g‐C3N4)has been a star visible‐light photocatalyst in this field due to its various advantages.However,pristine g‐C3N4usually exhibits limited activity.Herein,to enhance the performance of g‐C3N4,alkali metal ion(Li+,Na+,or K+)‐doped g‐C3N4are prepared via facile high‐temperature treatment.The prepared samples are characterized and analyzed using the technique of XRD,ICP‐AES,SEM,UV‐vis DRS,BET,XPS,PL,TRPL,photoelectrochemical measurements,photocatalytic tests,etc.The resultant doped photocatalysts show enhanced visible‐light photocatalytic activities for hydrogen production,benefiting from the increased specific surface areas(which provide more active sites),decreased band gaps for extended visible‐light absorption,and improved electronic structures for efficient charge transfer.In particular,because of the optimal tuning of both microstructure and electronic structure,the Na‐doped g‐C3N4shows the most effective utilization of photogenerated electrons during the water reduction process.As a result,the highest photocatalytic performance is achieved over the Na‐doped g‐C3N4photocatalyst(18.7?mol/h),3.7times that of pristine g‐C3N4(5.0?mol/h).This work gives a systematic study for the understanding of doping effect of alkali metals in semiconductor photocatalysis. 展开更多
关键词 g‐C3N4 alkali metal doping Photocatalytic hydrogen production Visible light Charge transfer
下载PDF
Influence of alkali metal doping on surface properties and catalytic activity/selectivity of CaO catalysts in oxidative coupling of methane 被引量:5
7
作者 V.H.Rane S.T.Chaudhari V.R.Choudhary 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期313-320,共8页
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat... Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process. 展开更多
关键词 oxidative coupling of methane alkali metal doped CaO catalysts basicity/base strength distribution catalytic activity/selectivity
下载PDF
Selective exchange of alkali metal ions on EAB zeolite 被引量:3
8
作者 Yansi Tong Danhua Yuan +3 位作者 Wenna Zhang Yingxu Wei Zhongmin Liu Yunpeng Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期41-47,共7页
EAB zeolite was successfully prepared and applied to selective adsorption of Li^(+),Na^(+)and K^(+)ions.The physical and chemical properties of the adsorbent were characterized by X-ray diffraction(XRD),X-ray fluoresc... EAB zeolite was successfully prepared and applied to selective adsorption of Li^(+),Na^(+)and K^(+)ions.The physical and chemical properties of the adsorbent were characterized by X-ray diffraction(XRD),X-ray fluorescence(XRF),scanning electron microscope(SEM)and thermogravimetry(TG)methods.The ion exchange behaviours for Li^(+),Na^(+)and K^(+)ions in monomcomponent and multicomponent solutions were studied.In independent ion exchange,the ion exchange capacities ratiosα(/Na/Li)andα(K/Li)were 3.8 and 6.2,respectively.In competitive ion exchange,the selectivitiesβ(Na/Li)andβ(K/Li)increased with the initial concentrations and reached 409 and 992 when the initial concentrations was 100 mmol/L.The thermodynamic study results showed that Gibbs free energy change(ΔGΘ)of ion exchange reaction between Li-EAB and K^(+)was-34.96 kJ/mol,indicating that ion exchange of K^(+)ions was more energetically favourable than Li^(+)ions.The calculation results showed that the energy barriers of ion exchange increased in the order K^(+)Na^(+)<Li^(+).The study shows that EAB zeolite is potential to be used in the separation of alkali ions. 展开更多
关键词 Ion exchange alkali metal ion EAB zeolite Competitive adsorption
下载PDF
Field emission properties of capped carbon nanotubes doped by alkali metals:a theoretical investigation 被引量:2
9
作者 靳磊 付宏刚 +1 位作者 谢颖 于海涛 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期647-651,共5页
The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indica... The electronic structures and field emission properties of capped CNT55 systems with or without alkali metal atom adsorption were systematically investigated by density functional theory calculation.The results indicate that the adsorption of alkali metal on the center site of a CNT tip is energetically favorable.In addition,the adsorption energies increase with the introduction of the electric field.The excessive negative charges on CNT tips make electron emittance much easier and result in a decrease in work function.Furthermore,the inducing effect by positively charged alkali metal atoms can be reasonably considered as the dominant reason for the improvement in field emission properties. 展开更多
关键词 field emission density functional theory carbon nanotube alkali metal
下载PDF
Gallium-based anodes for alkali metal ion batteries 被引量:2
10
作者 Wenjin Yang Xianghua Zhang +4 位作者 Huiteng Tan Dan Yang Yuezhan Feng Xianhong Rui Yan Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期557-571,共15页
Alkali metal ion batteries(AMIBs)are playing an irreplaceable part in the energy revolution,due to their intrinsic advantages of large capacity/power density and abundance of alkali metal ions in the earth’s crust.De... Alkali metal ion batteries(AMIBs)are playing an irreplaceable part in the energy revolution,due to their intrinsic advantages of large capacity/power density and abundance of alkali metal ions in the earth’s crust.Despite their great promise,the inborn deficiencies of commercial graphite and other anodes being researched so far call for the quest of better alternatives that exhibit all-round performance with the balance of energy/power density and cycling stability.Gallium-based materials,with impressive capacity utilization and self-healing ability,provide an anticipated solution to this conundrum.In this review,an overview on the recent progress of gallium-based anodes and their storage mechanism is presented.The current strategies used as engineering solutions to meet the scientific challenges ahead are discussed,in addition to the insightful outlook for possible future study. 展开更多
关键词 Gallium-based materials ANODE alkali metal ion batteries
下载PDF
Alkali Metal-incorporated Mesoporous Smectites:Crystallinity and Textural Properties 被引量:1
11
作者 HE Yan feng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2003年第3期253-256,共4页
A series of mesoporous smectite like materials incorporated with alkali metals such as Li, Na, K and Cs has been synthesized with the hydrothermal method. The crystalline and the pore structures of the materials synt... A series of mesoporous smectite like materials incorporated with alkali metals such as Li, Na, K and Cs has been synthesized with the hydrothermal method. The crystalline and the pore structures of the materials synthesized significantly change with the introduction of alkali metals. The addition of Li gives highly ordered layer phases, while the incorporation of Cs yields much less crystalline structures. Although Na or K has little effect on the crystalline structure, they modify the pore structure. 展开更多
关键词 Mesoporous material alkali metal Additive effect Crystalline structure Pore structure
下载PDF
Calculations on polarization properties of alkali metal atoms using Dirac–Fock plus core polarization method 被引量:1
12
作者 唐永波 李承斌 乔豪学 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期138-144,共7页
A semi-empirical atomic structure model method is developed in the framework of a relativistic case. This method starts from Dirac-Fock calculations using B-spline basis set. The core-valence electron correction is th... A semi-empirical atomic structure model method is developed in the framework of a relativistic case. This method starts from Dirac-Fock calculations using B-spline basis set. The core-valence electron correction is then treated in a semiempirical core polarization potential. As an application, the polarization properties of alkali metal atoms, including the static polarizabilities and long-range two-body dispersion coefficients, have been calculated. Our results are in good agreement with the results obtained from ab initio relativistic many-body perturbation method and the available experimental measurements. 展开更多
关键词 DIRAC-FOCK core polarization POLARIZABILITIES alkali metal atoms
下载PDF
Study of Spectral Character of Alkali Metals Using Microwave Plasma Torch Simultaneous Spectrometer 被引量:1
13
作者 FENG Guo-dong WAN Yi HUAN Yan-fu JIANG jie LI Ming CAO Yan-bo YU Ai-min JIN Qin-han 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2006年第6期703-707,共5页
A microwave plasma torch (MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward pow... A microwave plasma torch (MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0. 8 and 1.0 L/min, respectively. The HC1 concentration in the solution was 0.02 mol/L. The observation height was 9. 0 ram. The detection limits of Li, Na, K, Rb, and Cs were 0. 0003, 0. 0004, 0. 009, 0.07 and 2.4 mg/L, respectively, and the resuhs obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied. 展开更多
关键词 alkali metals Microwave plasma torch Simultaneous spectrometer Matrix effects
下载PDF
Nano-baskets of Calix[4]-l,3-crown in Emulsion Membranes for Selective Extraction of Alkali Metal Cations 被引量:1
14
作者 Bahram Mokhtari Kobra Pourabdollah 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第11期1313-1318,共6页
Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclu sion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixcrown ... Nano-assisted inclusion separation of alkali metals from basic solutions was reported by inclu sion-facilitated emulsion liquid membrane process. The novelty of this study is application of nano-baskets of calixcrown in the selective and efficient separation of alkali metals as both the carrier and the surfactant. For this aim, four derivatives of diacid calix[4]-1,3-crowns-4,5 were synthesized, and their inclusion-extraction parameters were optimized including the calixcrown scaffold (4.4%, by mass) as the carrier/demulsifier, the commercial kero sene as diluent in membrane, sulphonic acid (0.2 mol.L-1) and ammonium carbonate (0.4 mol.L-1) as the strip and the feed phases, the phase and the treat ratios of 0.8 and 0.3, mixing speed (300 r.min-1), and initial solute concentration (100 mg.L-1). The selectivity of membrane over more than ten interfering cations was examined and the re sults reveled that under the optimized operating condition, the degree of inclusion-extraction of alkali metals was as high as 98%-99%. 展开更多
关键词 NANO-BASKET INCLUSION CALIXCROWN emulsion liquid membrane alkali metals
下载PDF
Temporal Characteristics of GaAs NEA and Alkali Metal Photocathodes 被引量:1
15
作者 李相民 周立伟 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期381-384,共4页
The temporal characteristics of GaAs NEA and alkali metal photocathodes are studied using Monte Carlo simulation method. The electron transit time and its distribution functions in the photocathodes are calculated. Ba... The temporal characteristics of GaAs NEA and alkali metal photocathodes are studied using Monte Carlo simulation method. The electron transit time and its distribution functions in the photocathodes are calculated. Based on the results, the time modulation transfer functions and temporal resolutions of the photocathodes are obtained. The results show that the response time and temporal resolution of alkali metal photocathode is in femitosecond order and those of GaAs NEA photocathode are in picosecond order. 展开更多
关键词 GaAs photocathode alkali metal photocathode Monte Carlo simulation time modulation transfer function
下载PDF
Preparation and infrared emissivities of alkali metal doped ZnO powders 被引量:1
16
作者 李会会 黄云霞 +2 位作者 李智敏 姚银华 张淑敏 《Journal of Central South University》 SCIE EI CAS 2014年第9期3449-3455,共7页
Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were i... Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were investigated. The structure and surface morphologies of samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The UV-Vis absorption and infrared emissivities were investigated by a UV-Vis spectrophotometer and an infrared emissometer, respectively. XRD patterns confirm the wurtzite structure of the as prepared samples with single phase. Smooth grain surfaces are detected in all doped ZnO samples, while ZnO:Li and ZnO:Na present the aggregation of grains. The redshifts in the optical band-gap are observed in K-, Na-, and Li-doped ZnO with the values 3.150, 3.144, and 3.142 eV. Due to better crystalline quality, ZnO:K shows a lower emissivity than others. The emissivity of K-doped ZnO decreases to the minimum value(0.804), at 1200 °C and holding 2 h. Compared with KNO3 as K source, K2CO3 doped ZnO has lower emissivities. 展开更多
关键词 infrared emissivity alkali metal crystalline quality optical band-gap ZnO powders
下载PDF
Effect of alkali metal ions on the formation mechanism of HCN during pyridine pyrolysis 被引量:1
17
作者 Ji Liu Wei Zhao +3 位作者 Xinrui Fan Mingxin Xu Shu Zheng Qiang Lu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第3期349-359,共11页
The catalytic effects of alkali metal ions(Na^(+)and K^(+))on NO_(x)precursor formation during coal pyrolysis were investigated using the N-containing compound pyridine as a model compound.Density functional theory ca... The catalytic effects of alkali metal ions(Na^(+)and K^(+))on NO_(x)precursor formation during coal pyrolysis were investigated using the N-containing compound pyridine as a model compound.Density functional theory calculations at the B3LYP/6-31G(d,p)level of theory were conducted to elucidate the mechanism of pyridine pyrolysis and the pathways for HCN formation.The calculation results indicate that Na^(+)and K^(+)have distinct influences on different pyrolysis reactions;these alkali metal ions facilitate the initial hydrogen transfer from C_(1)to N and C_(2),whereas they hinder the other hydrogen migration reactions.Both Na^(+)and K^(+)significantly reduce the activation energies for C–C bond breakage and triple-bond formation,whereas they increase the activation energies for the isomerization reactions.The different effects essentially result from the distinct charge distributions induced by the two ions.Due to the distinct influences on the different reactions,the rate-determining steps are modulated,affecting the competitiveness of the different possible pathways of HCN formation.The formation of HCN from pyridine is promoted in the presence of Na^(+)and K^(+)because all the overall activation energies are decreased for different pathways.The calculation results agree well with previous experimental studies.Thus,the findings offer a new and promising approach to reveal the formation mechanism of NO_(x)and facilitate the control of NO_(x)for coal utilization. 展开更多
关键词 Nitric oxide PYRIDINE alkali metal ions DFT Catalysis NO_(x)precursor
下载PDF
Promotion effects of alkali metals on iron molybdate catalysts for CO_(2)catalytic hydrogenation 被引量:1
18
作者 Yong Zhou Aliou Sadia Traore +9 位作者 Deizi V.Peron Alan J.Barrios Sergei A.Chernyak Massimo Corda Olga V.Safonova Achim Iulian Dugulan Ovidiu Ersen Mirella Virginie Vitaly V.Ordomsky Andrei Y.Khodakov 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期291-300,I0009,共11页
CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly... CO_(2)hydrogenation is an attractive way to store and utilize carbon dioxide generated by industrial processes,as well as to produce valuable chemicals from renewable and abundant resources.Iron catalysts are commonly used for the hydrogenation of carbon oxides to hydrocarbons.Iron-molybdenum catalysts have found numerous applications in catalysis,but have been never evaluated in the CO_(2)hydrogenation.In this work,the structural properties of iron-molybdenum catalysts without and with a promoting alkali metal(Li,Na,K,Rb,or Cs)were characterized using X-ray diffraction,hydrogen temperatureprogrammed reduction,CO_(2)temperature-programmed desorption,in-situ^(57)Fe Mossbauer spectroscopy and operando X-ray adsorption spectroscopy.Their catalytic performance was evaluated in the CO_(2)hydrogenation.During the reaction conditions,the catalysts undergo the formation of an iron(Ⅱ)molybdate structure,accompanied by a partial reduction of molybdenum and carbidization of iron.The rate of CO_(2)conversion and product selectivity strongly depend on the promoting alkali metals,and electronegativity was identified as an important factor affecting the catalytic performance.Higher CO_(2)conversion rates were observed with the promoters having higher electronegativity,while low electronegativity of alkali metals favors higher light olefin selectivity. 展开更多
关键词 CO_(2)utilization Iron molybdate catalysts PROMOTION alkali metals Light olefins In-situ characterization
下载PDF
Alkali metal cation effects on electrocatalytic CO_(2)reduction with iron porphyrins 被引量:1
19
作者 Kai Guo Haitao Lei +5 位作者 Xialiang Li Zongyao Zhang Yabo Wang Hongbo Guo Wei Zhang Rui Cao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1439-1444,共6页
The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali... The electrocatalytic CO_(2)reduction reaction(CO_(2)RR)has attracted increasing attention in recentyears.Practical electrocatalysis of CO_(2)RR must be carried out in aqueous solutions containing electrolytesof alkali metal cations such as sodium and potassium.Although considerable efforts havebeen made to design efficient electrocatalysts for CO_(2)RR and to investigate the structure–activityrelationships using molecular model complexes,only a few studies have been investigated the effectof alkali metal cations on electrocatalytic CO_(2)RR.In this study,we report the effect of alkali metalcations(Na^(+)and K^(+))on electrocatalytic CO_(2)RR with Fe porphyrins.By running CO_(2)RR electrocatalysisin dimethylformamide(DMF),we found that the addition of Na^(+)or K^(+)considerably improves thecatalytic activity of Fe chloride tetrakis(3,4,5‐trimethoxyphenyl)porphyrin(FeP).Based on thisresult,we synthesized an Fe porphyrin^(N)18C6‐FeP bearing a tethered 1‐aza‐18‐crown‐6‐ether(^(N)18C6)group at the second coordination sphere of the Fe site.We showed that with the tethered^(N)18C6 to bind Na^(+)or K^(+),^(N)18C6‐FeP is more active than FeP for electrocatalytic CO_(2)RR.This workdemonstrates the positive effect of alkali metal cations to improve CO_(2)RR electrocatalysis,which isvaluable for the rational design of new efficient catalysts. 展开更多
关键词 CO2 reduction Molecular electrocatalysis alkali metal cation effect Iron porphyrin Structure‐activity relationship
下载PDF
Emerging Carbon Nanotube-Based Nanomaterials for Stable and Dendrite-Free Alkali Metal Anodes:Challenges,Strategies,and Perspectives 被引量:1
20
作者 Zhongxiu Liu Yong Liu +6 位作者 Yingjie Miao Guilong Liu Renhong Yu Kunming Pan Guangxin Wang Xinchang Pang Jianmin Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期50-72,共23页
Alkali metals(Li,Na,and K)are promising candidates for high-performance rechargeable alkali metal battery anodes due to their high theoretical specific capacity and low electrochemical potential.However,the actual app... Alkali metals(Li,Na,and K)are promising candidates for high-performance rechargeable alkali metal battery anodes due to their high theoretical specific capacity and low electrochemical potential.However,the actual application of alkali metal anodes is impeded by the challenges of alkali metals,including their high chemical reactivity,uncontrolled dendrite growth,unstable solid electrolyte interphase,and infinite volume expansion during cycling processes.Introducing carbon nanotube-based nanomaterials in alkali metal anodesis an effective solution to these issues.These nanomaterials have attracted widespread attention owing to their unique properties,such as their high specific surface area,superior electronic conductivity,and excellent mechanical stability.Considering the rapidly growing research enthusiasm for this topic in the last several years,we review recent progress on the application of carbon nanotube-based nanomaterials in stable and dendrite-free alkali metal anodes.The merits and issues of alkali metal anodes,as well as their stabilizing strategies are summarized.Furthermore,the relationships among methods of synthesis,nano-or microstructures,and electrochemical properties of carbon nanotube-based alkali metal anodes are systematically discussed.In addition,advanced characterization technologies on the reaction mechanism of carbon nanotube-based nanomaterials in alkali metal anodes are also reviewed.Finally,the challenges and prospects for future study and applications of carbon nanotube-based AMAs in high-performance alkali metal batteries are discussed. 展开更多
关键词 alkali metal anodes carbon nanotube dendrite free electrochemical performance NANOMATERIALS
下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部