Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat...Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.展开更多
CoCu/TiO_2 catalysts promoted using alkali metals(Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of the ...CoCu/TiO_2 catalysts promoted using alkali metals(Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of the alkali metals on the physicochemical properties of the CoCu/TiO_2 catalysts and the catalytic performance for CO_2 hydrogenation to long-chain hydrocarbons(C_(5+))were investigated in this work. According to the characterization of the catalysts based on X-ray photoelectron spectroscopy, X-ray diffraction, CO_2 temperature-programmed desorption(TPD), and H_2-TPD, the introduction of alkali metals could increase the CO_2 adsorption and decrease the H_2 chemisorption, which could suppress the formation of CH_4, enhance the production of C_(5+), and decrease the hydrogenation activity. Among all the promoters, the Na-modified CoCu/TiO_2 catalyst provided the maximum C_(5+) yield of 5.4%, with a CO_2 conversion of 18.4% and C_(5+) selectivity of42.1%, because it showed the strongest basicity and a slight decrease in the amount of H_2 desorption;it also exhibited excellent catalytic stability of more than 200 h.展开更多
Cs Rb V series low temperature sulphuric acid catalyst was prepared for the first time by using carbonized mother liquor containing alkali metal salts. The results show that the conversion of SO 2 on catalyst prepared...Cs Rb V series low temperature sulphuric acid catalyst was prepared for the first time by using carbonized mother liquor containing alkali metal salts. The results show that the conversion of SO 2 on catalyst prepared directly with carbonized mother liquor could reach to 24.8% at 410?℃. If n (Na)/ n (V) was adjusted properly, the conversion of SO 2 could be increased to 35.6% at 410?℃. Refined carbonized mother liquor could make the catalytic activity even higher at low temperature, the conversion of SO 2 could be increased to 36.65% at 410?℃. The catalyst was examined with differential thermal analysis. It was found that both endothermic peaks and exothermic peaks of catalyst shifted forward obviously and the catalyst possessed higher activity at low temperature.展开更多
In this study,commercial V2O5-WO3/TiO2catalysts were deactivated by loading with alkali metals(K and Na).These catalysts were then regenerated by washing with either deionized water or 0.5 mol/L H2SO4(through the ultr...In this study,commercial V2O5-WO3/TiO2catalysts were deactivated by loading with alkali metals(K and Na).These catalysts were then regenerated by washing with either deionized water or 0.5 mol/L H2SO4(through the ultrasonic-assisted method).The samples used in this research were characterized by NH3-temperature programmed desorption(TPD),and X-ray photoelectron spectroscopy(XPS).Results showed that Na2O and K2O doping can poison the V2O5-WO3/TiO2catalyst and that the poisoning effect of Na2O was stronger than that of K2O.However,the Na2O-loaded sample was easier to regenerate than the K2O-loaded sample.The surfaces of catalysts can be sulfated by washing with dilute sulfuric acid because strong acid sites adhere to the catalyst surface.SO42-could also promote catalyst activity.As indicated by the NH3-TPD findings,the deposition of Na2O and K2O could also reduce the amount of desorbed ammonia and destabilize the acid sites,especially strong chemisorption sites.XPS results revealed that catalysts were deactivated by the decrease in the concentration of chemisorbed oxygen[the Oa/(Oα+Oβ)ratio].In the Na2O-doped catalyst,much chemisorbed oxygen was lost(from 28.8%to10.6%).However,the decrease in the Oa/(Oα+Oβ)ratio was less significant in the K2O-doped catalyst(from28.8%to 23.5%).Nonetheless,the binding energies of O1s broadened with respect to both high and low energy.In particular,the binding energy of chemisorbed oxygen increased from 531.5 to 531.8 eV.展开更多
文摘Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process.
文摘CoCu/TiO_2 catalysts promoted using alkali metals(Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of the alkali metals on the physicochemical properties of the CoCu/TiO_2 catalysts and the catalytic performance for CO_2 hydrogenation to long-chain hydrocarbons(C_(5+))were investigated in this work. According to the characterization of the catalysts based on X-ray photoelectron spectroscopy, X-ray diffraction, CO_2 temperature-programmed desorption(TPD), and H_2-TPD, the introduction of alkali metals could increase the CO_2 adsorption and decrease the H_2 chemisorption, which could suppress the formation of CH_4, enhance the production of C_(5+), and decrease the hydrogenation activity. Among all the promoters, the Na-modified CoCu/TiO_2 catalyst provided the maximum C_(5+) yield of 5.4%, with a CO_2 conversion of 18.4% and C_(5+) selectivity of42.1%, because it showed the strongest basicity and a slight decrease in the amount of H_2 desorption;it also exhibited excellent catalytic stability of more than 200 h.
文摘Cs Rb V series low temperature sulphuric acid catalyst was prepared for the first time by using carbonized mother liquor containing alkali metal salts. The results show that the conversion of SO 2 on catalyst prepared directly with carbonized mother liquor could reach to 24.8% at 410?℃. If n (Na)/ n (V) was adjusted properly, the conversion of SO 2 could be increased to 35.6% at 410?℃. Refined carbonized mother liquor could make the catalytic activity even higher at low temperature, the conversion of SO 2 could be increased to 36.65% at 410?℃. The catalyst was examined with differential thermal analysis. It was found that both endothermic peaks and exothermic peaks of catalyst shifted forward obviously and the catalyst possessed higher activity at low temperature.
基金supported by the National Natural Science Foundation of China (21177051)the Fundamental Research Funds for the Central Universities (06101047)Program for New Century Excellent Talents in University (NECT-13-0667)
文摘In this study,commercial V2O5-WO3/TiO2catalysts were deactivated by loading with alkali metals(K and Na).These catalysts were then regenerated by washing with either deionized water or 0.5 mol/L H2SO4(through the ultrasonic-assisted method).The samples used in this research were characterized by NH3-temperature programmed desorption(TPD),and X-ray photoelectron spectroscopy(XPS).Results showed that Na2O and K2O doping can poison the V2O5-WO3/TiO2catalyst and that the poisoning effect of Na2O was stronger than that of K2O.However,the Na2O-loaded sample was easier to regenerate than the K2O-loaded sample.The surfaces of catalysts can be sulfated by washing with dilute sulfuric acid because strong acid sites adhere to the catalyst surface.SO42-could also promote catalyst activity.As indicated by the NH3-TPD findings,the deposition of Na2O and K2O could also reduce the amount of desorbed ammonia and destabilize the acid sites,especially strong chemisorption sites.XPS results revealed that catalysts were deactivated by the decrease in the concentration of chemisorbed oxygen[the Oa/(Oα+Oβ)ratio].In the Na2O-doped catalyst,much chemisorbed oxygen was lost(from 28.8%to10.6%).However,the decrease in the Oa/(Oα+Oβ)ratio was less significant in the K2O-doped catalyst(from28.8%to 23.5%).Nonetheless,the binding energies of O1s broadened with respect to both high and low energy.In particular,the binding energy of chemisorbed oxygen increased from 531.5 to 531.8 eV.
基金The Scientific Research Foundation for the Returned Overseas Chinese Scholars of State Education Ministry(2004-527)the State Key Laboratory of Coal Conversion(06-603)