This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O2/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation...This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O2/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation of 2,4-dichlorophenoxyacetic acid was studied under different H202/O3 molar ratio and pH value. Meanwhile, TOC removal was investigated both in distilled water and tap water. The influences of ozone transfer and consumed hydrogen peroxide were also discussed. The degradation products and oxidation intermediates were identified by GC-MS and LC-MS. A possible reaction mechanism was thus proposed.展开更多
Two methods of computer data processing, linear fitting and nonlinear fitting, are applied to compute the rate constant for hydrogen peroxide decomposition reaction. The results indicate that not only the new methods ...Two methods of computer data processing, linear fitting and nonlinear fitting, are applied to compute the rate constant for hydrogen peroxide decomposition reaction. The results indicate that not only the new methods work with no necessity to measure the final oxygen volume, but also the fitting errors decrease evidently.展开更多
The performance of UV/H_2O_2, UV/O_3, and UV/H_2O_2/O_3 oxidationsystems for the treatment of municipal solid-waste landfill leachatewas investigated. Main objective of the experiment was to removetotal organic carbon...The performance of UV/H_2O_2, UV/O_3, and UV/H_2O_2/O_3 oxidationsystems for the treatment of municipal solid-waste landfill leachatewas investigated. Main objective of the experiment was to removetotal organic carbon (TOC), non-biodegradable organic compounds(NBDOC) and color. In UV/H_2O_2 oxidation experiment, with theincrease of H_2O_2 dosage, removal efficiencies of TOC and coloralong with the ratio of biochemical oxygen demand (BOD) to chemicaloxygen demand (COD) of the effluent were increased and a betterperformance was obtained than the system H_2O_2 alone.展开更多
Basic organic chemicals and high value–added products are mainly produced by hydrocarbon nitridation and oxidation.However,several drawbacks limit the application of the traditional oxidation and nitridation technolo...Basic organic chemicals and high value–added products are mainly produced by hydrocarbon nitridation and oxidation.However,several drawbacks limit the application of the traditional oxidation and nitridation technologies in the future,such as complex processes,poor intrinsic safety,low atom utilization,and serious environmental pollution.The green nitridation and oxidation technologies are urgently needed.Hydrogen peroxide,a well–known green oxidant,is widely used in green hydrocarbon oxidation and nitridation.But its industrial production in China adopts fixed–bed technology,which is fall behind slurry–bed technology adopted by advanced foreign chemical companies,limiting the development of hydrogen peroxide industry and green hydrocarbon nitridation or oxidation industry.This article reviews the industrial production technologies of hydrogen peroxide and basic organic chemicals such as caprolactam,aniline,propene oxide,epichlorohydrin,phenol,and benzenediol,especially introduces the green production technologies of basic organic chemicals related with H_(2)O_(2).The article also emphasis on the efforts of Chinese researchers in developing its own slurry–bed technology of hydrogen peroxide production,and corresponding green hydrocarbon nitridation or oxidation technologies with hydrogen peroxide.Compared with traditional nitridation or oxidation technologies,green production technologies of caprolactam,propene oxide,epichlorohydrin,and benzenediol with hydrogen peroxide promote the nitrogen atom utilization from 60%to near 100%and the carbon atom utilization from 80%to near 100%.The waste emissions and environmental investments are reduced dramatically.Technological blockade against the green chemical industry of China are partially broken down,and technological upgrade in the chemical industry of China is guaranteed.展开更多
Electrochemical techniques were used to oxidize organic pollutants by Fenton process using a mix of H2O2 and ferrous ions at a parallel plate reactor. The first stage was to build a micro scale reactor comprising two ...Electrochemical techniques were used to oxidize organic pollutants by Fenton process using a mix of H2O2 and ferrous ions at a parallel plate reactor. The first stage was to build a micro scale reactor comprising two compartments, cathode and anode, separated by a membrane (Nafion-117). Each compartment has inlets and outlets to allow the flow of fluids (10 Lmin-1). The function of the reactor is to oxidize organic pollutants as well as to produce H2. Hydrogen is electrogenerated in the catholyte by the reduction of protons on a carbon steel cathode in acidic medium (0.05 M H2SO4). At the same time, a mixture of Fe2+/Fe3+ ions is produced in the anolyte (0.05 M Na2SO4, pH ≈ 2) by means of the oxidation of a sacrificial electrode made of stainless steel mesh. Fe2+/Fe3+ ions interact with H2O2 to generate strong oxidants which are responsible for oxidizing the organic matter and removing color. A voltage of 1 V was applied between the electrodes and remained constant, while the current observed was approximately 0.06 A. Under these conditions, the activation rate with different H2O2 concentrations (15, 20, 25, 30, 35, 40, 45 and 50 mM) was evaluated. The maximum activation rate (1.3 mM·min-1) was obtained using 30 mM H2O2. Under these conditions, the oxidation of a synthetic industrial effluent (0.615 mM BB9) was performed and the following results were obtained: 95% of this concentration was removed in 5 minutes and 15 mL of H2 was electrogenerated in 30 minutes.展开更多
Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibi...Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.展开更多
The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed...The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed. It was found that the proper H2O2/O3 molar ratio for the degradation of p-nitrotoluene was around 0.6, different pH values and the presence of t-butanol highly influenced the removal efficiency of p-nitrotoluene. 5-methyl-2-nitrophenol, 2-methyl-5-nitrophenol, (4-nitrophenyl) methanol, 5-(hydroxymethyl)-2-nitro phenol, acetic acid, 2-methylpropane diacid and 2-(hydroxylmethyl)propane diacid were identified as degradation intermediates and products through GC-MS. Radical reaction mechanism and degradation pathway were proposed based on the results of experiments. It is deduced that the benzene ring of p-nitrotoluene can be only destroyed by hydroxyl radicals through a polyhydroxy intermediate pathway. Then unstable polyhydroxy intermediates can be oxidized to different acids with low molecular weight rapidly.展开更多
Mitochondrial calcium uniporter(MCU)is a conserved calcium ion(Ca^(2+))transporter in the mitochondrial inner membrane of eukaryotic cells.How MCU proteins regulate Ca^(2+)flow and modulate plant cell development rema...Mitochondrial calcium uniporter(MCU)is a conserved calcium ion(Ca^(2+))transporter in the mitochondrial inner membrane of eukaryotic cells.How MCU proteins regulate Ca^(2+)flow and modulate plant cell development remain largely unclear.Here,we identified the gene GhMCU4 encoding a MCU protein that negatively regulates plant development and fiber elongation in cotton(Gossypium hirsutum).GhMCU4expressed constitutively in various tissues with the higher transcripts in elongating fiber cells.Knockdown of GhMCU4 in cotton significantly elevated the plant height and root length.The calcium signaling pathway was significantly activated and calcium sensor genes,including Ca^(2+)dependent modulator of interactor of constitutively active ROP(GhCMI1),calmodulin like protein(GhCML46),calciumdependent protein kinases(GhCPKs),calcineurin B-like protein(GhCBLs),and CBL-interacting protein kinases(GhCIPKs),were dramatically upregulated in GhMCU4-silenced plants.Metabolic processes were preferentially enriched,and genes related to regulation of transcription were upregulated in GhMCU4-silenced plants.The contents of Ca^(2+)and H_(2)O_(2)were significantly increased in roots and leaves of GhMCU4-silenced plants.Fiber length and Ca^(2+)and H_(2)O_(2)contents in fibers were significantly increased in GhMCU4-silenced plants.This study indicated that GhMCU4 plays a negative role in regulating cell elongation in cotton,thus expanding understanding in the role of MCU proteins in plant growth and development.展开更多
基金The National Natural Science Foundation of China (No. 50378028)
文摘This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O2/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation of 2,4-dichlorophenoxyacetic acid was studied under different H202/O3 molar ratio and pH value. Meanwhile, TOC removal was investigated both in distilled water and tap water. The influences of ozone transfer and consumed hydrogen peroxide were also discussed. The degradation products and oxidation intermediates were identified by GC-MS and LC-MS. A possible reaction mechanism was thus proposed.
文摘Two methods of computer data processing, linear fitting and nonlinear fitting, are applied to compute the rate constant for hydrogen peroxide decomposition reaction. The results indicate that not only the new methods work with no necessity to measure the final oxygen volume, but also the fitting errors decrease evidently.
文摘The performance of UV/H_2O_2, UV/O_3, and UV/H_2O_2/O_3 oxidationsystems for the treatment of municipal solid-waste landfill leachatewas investigated. Main objective of the experiment was to removetotal organic carbon (TOC), non-biodegradable organic compounds(NBDOC) and color. In UV/H_2O_2 oxidation experiment, with theincrease of H_2O_2 dosage, removal efficiencies of TOC and coloralong with the ratio of biochemical oxygen demand (BOD) to chemicaloxygen demand (COD) of the effluent were increased and a betterperformance was obtained than the system H_2O_2 alone.
基金support from the National Natural Science Foundation of China(U19B6002)National Key Research and Development Program of China(2016YFB0301600).
文摘Basic organic chemicals and high value–added products are mainly produced by hydrocarbon nitridation and oxidation.However,several drawbacks limit the application of the traditional oxidation and nitridation technologies in the future,such as complex processes,poor intrinsic safety,low atom utilization,and serious environmental pollution.The green nitridation and oxidation technologies are urgently needed.Hydrogen peroxide,a well–known green oxidant,is widely used in green hydrocarbon oxidation and nitridation.But its industrial production in China adopts fixed–bed technology,which is fall behind slurry–bed technology adopted by advanced foreign chemical companies,limiting the development of hydrogen peroxide industry and green hydrocarbon nitridation or oxidation industry.This article reviews the industrial production technologies of hydrogen peroxide and basic organic chemicals such as caprolactam,aniline,propene oxide,epichlorohydrin,phenol,and benzenediol,especially introduces the green production technologies of basic organic chemicals related with H_(2)O_(2).The article also emphasis on the efforts of Chinese researchers in developing its own slurry–bed technology of hydrogen peroxide production,and corresponding green hydrocarbon nitridation or oxidation technologies with hydrogen peroxide.Compared with traditional nitridation or oxidation technologies,green production technologies of caprolactam,propene oxide,epichlorohydrin,and benzenediol with hydrogen peroxide promote the nitrogen atom utilization from 60%to near 100%and the carbon atom utilization from 80%to near 100%.The waste emissions and environmental investments are reduced dramatically.Technological blockade against the green chemical industry of China are partially broken down,and technological upgrade in the chemical industry of China is guaranteed.
文摘Electrochemical techniques were used to oxidize organic pollutants by Fenton process using a mix of H2O2 and ferrous ions at a parallel plate reactor. The first stage was to build a micro scale reactor comprising two compartments, cathode and anode, separated by a membrane (Nafion-117). Each compartment has inlets and outlets to allow the flow of fluids (10 Lmin-1). The function of the reactor is to oxidize organic pollutants as well as to produce H2. Hydrogen is electrogenerated in the catholyte by the reduction of protons on a carbon steel cathode in acidic medium (0.05 M H2SO4). At the same time, a mixture of Fe2+/Fe3+ ions is produced in the anolyte (0.05 M Na2SO4, pH ≈ 2) by means of the oxidation of a sacrificial electrode made of stainless steel mesh. Fe2+/Fe3+ ions interact with H2O2 to generate strong oxidants which are responsible for oxidizing the organic matter and removing color. A voltage of 1 V was applied between the electrodes and remained constant, while the current observed was approximately 0.06 A. Under these conditions, the activation rate with different H2O2 concentrations (15, 20, 25, 30, 35, 40, 45 and 50 mM) was evaluated. The maximum activation rate (1.3 mM·min-1) was obtained using 30 mM H2O2. Under these conditions, the oxidation of a synthetic industrial effluent (0.615 mM BB9) was performed and the following results were obtained: 95% of this concentration was removed in 5 minutes and 15 mL of H2 was electrogenerated in 30 minutes.
基金supported by grants from the Research Grants Council of the Hong Kong SAR,China(T21-705/20-N and 16210221).
文摘Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50378028)
文摘The degradation of p-nitrotoluene by O3/H2O2 process in a bubble contact column was investigated. Effects of the molar ratio of hydrogen peroxide to ozone,pH value and t-butanol on the oxidation process were discussed. It was found that the proper H2O2/O3 molar ratio for the degradation of p-nitrotoluene was around 0.6, different pH values and the presence of t-butanol highly influenced the removal efficiency of p-nitrotoluene. 5-methyl-2-nitrophenol, 2-methyl-5-nitrophenol, (4-nitrophenyl) methanol, 5-(hydroxymethyl)-2-nitro phenol, acetic acid, 2-methylpropane diacid and 2-(hydroxylmethyl)propane diacid were identified as degradation intermediates and products through GC-MS. Radical reaction mechanism and degradation pathway were proposed based on the results of experiments. It is deduced that the benzene ring of p-nitrotoluene can be only destroyed by hydroxyl radicals through a polyhydroxy intermediate pathway. Then unstable polyhydroxy intermediates can be oxidized to different acids with low molecular weight rapidly.
基金supported by National Key Research and Development Program of China(2022YFD1200300)Jiangsu Key R&D Program(BE2022384)the Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry(CIC-MCP)(No.10)。
文摘Mitochondrial calcium uniporter(MCU)is a conserved calcium ion(Ca^(2+))transporter in the mitochondrial inner membrane of eukaryotic cells.How MCU proteins regulate Ca^(2+)flow and modulate plant cell development remain largely unclear.Here,we identified the gene GhMCU4 encoding a MCU protein that negatively regulates plant development and fiber elongation in cotton(Gossypium hirsutum).GhMCU4expressed constitutively in various tissues with the higher transcripts in elongating fiber cells.Knockdown of GhMCU4 in cotton significantly elevated the plant height and root length.The calcium signaling pathway was significantly activated and calcium sensor genes,including Ca^(2+)dependent modulator of interactor of constitutively active ROP(GhCMI1),calmodulin like protein(GhCML46),calciumdependent protein kinases(GhCPKs),calcineurin B-like protein(GhCBLs),and CBL-interacting protein kinases(GhCIPKs),were dramatically upregulated in GhMCU4-silenced plants.Metabolic processes were preferentially enriched,and genes related to regulation of transcription were upregulated in GhMCU4-silenced plants.The contents of Ca^(2+)and H_(2)O_(2)were significantly increased in roots and leaves of GhMCU4-silenced plants.Fiber length and Ca^(2+)and H_(2)O_(2)contents in fibers were significantly increased in GhMCU4-silenced plants.This study indicated that GhMCU4 plays a negative role in regulating cell elongation in cotton,thus expanding understanding in the role of MCU proteins in plant growth and development.