Conventional process flow and main work mechanism of alkaline cleaning process of Continual Annealing Line are generally reviewed in the paper,and the work flow of design is analysed including the lye,rinse water circ...Conventional process flow and main work mechanism of alkaline cleaning process of Continual Annealing Line are generally reviewed in the paper,and the work flow of design is analysed including the lye,rinse water circuit,conductivity detection circuit,utility media supply circuit and other main working circuits.Meanwhile,the heat demand of the alkaline cleaning system,rinse water system and dryer device are also analysed.Lumped parameter method in the heat-transfer theory is adopted to calculate the heating time of unsteady heat transfer for strips in the on-line tank.And the reasons why brush roller is of inverse brush and rinsing nozzles are equipped at the inlet side are found.Types and working principles of iron removal and degreasing devices for alkaline cleaning system,which adopt new magnetic filtration and ultra filtration processes,are described.Besides,the bypass filtering method is used to calculate the processing capacity of magnetic filtration and ultra filtration devices.Finally,the related features of 3-Dimension software "PlantSpace" for designing a CAL in Baosteel are totally introduced,such as specification for piping,co-designing,pipe code and 3-Dimension design process.展开更多
The cleaning of copper interconnects after chemical mechanical planarization (CMP) process is a crit- ical step in integrated circuits (ICs) fabrication. Benzotriazole (BTA), which is used as corrosion inhibitor...The cleaning of copper interconnects after chemical mechanical planarization (CMP) process is a crit- ical step in integrated circuits (ICs) fabrication. Benzotriazole (BTA), which is used as corrosion inhibitor in the copper CMP slurry, is the primary source for the formation of organic contaminants. The presence of BTA can degrade the electrical properties and reliability of ICs which needs to be removed by using an effective cleaning solution. In this paper, an alkaline cleaning solution was proposed. The alkaline cleaning solution studied in this work consists of a chelating agent and a nonionic surfactant. The removal of BTA was characterized by contact angle measurements and potentiodynamic polarization studies. The cleaning properties of the proposed cleaning solution on a 300 mm copper patterned wafer were also quantified, total defect counts after cleaning was studied, scanning electron microscopy (SEM) review was used to identify types of BTA to confirm the ability of cleaning solution for BTA removal. All the results reveal that the chelating agent can effectively remove the BTA residual, nonionic surfactant can further improve the performance.展开更多
SiC nanowires with thickness-controlled SiO2 shells have been obtained by a simple and efficient method, namely treatment of SiC/SiO2 core-shell nanowires in NaOH solution. The products were characterized by transmiss...SiC nanowires with thickness-controlled SiO2 shells have been obtained by a simple and efficient method, namely treatment of SiC/SiO2 core-shell nanowires in NaOH solution. The products were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, infrared (IR) spectroscopy, and photoluminescence spectroscopy. The thickness of the SiO2 shell can be effectively controlled by selecting the appropriate processing time, and pure SiC nanowires were also obtained by alkaline cleaning in 1 mol-L-1 NaOH solution for 40 min at 70 ~C. A mechanism for the removal of the SiO2 shells has been proposed, and a two-phase reaction kinetic equation was derived to explain the rate of the removal of the SiO2 shells. The validity of this equation was verified by experiment. This work not only describes an effective experimental method for achieving SiC nanowires with thickness-controlled SiO2 coatings but also provides a fundamental theoretical equation with a certain level of generality. In addition, photoluminescence (PL) measurement results showed that the SiC nanowires sheathed with an optimum SiO2 thickness (3.03 nm) have better photoluminescence properties than either the bare SiC nanowires or SiC nanowires with thicker coatings of SiO2.展开更多
文摘Conventional process flow and main work mechanism of alkaline cleaning process of Continual Annealing Line are generally reviewed in the paper,and the work flow of design is analysed including the lye,rinse water circuit,conductivity detection circuit,utility media supply circuit and other main working circuits.Meanwhile,the heat demand of the alkaline cleaning system,rinse water system and dryer device are also analysed.Lumped parameter method in the heat-transfer theory is adopted to calculate the heating time of unsteady heat transfer for strips in the on-line tank.And the reasons why brush roller is of inverse brush and rinsing nozzles are equipped at the inlet side are found.Types and working principles of iron removal and degreasing devices for alkaline cleaning system,which adopt new magnetic filtration and ultra filtration processes,are described.Besides,the bypass filtering method is used to calculate the processing capacity of magnetic filtration and ultra filtration devices.Finally,the related features of 3-Dimension software "PlantSpace" for designing a CAL in Baosteel are totally introduced,such as specification for piping,co-designing,pipe code and 3-Dimension design process.
基金supported by the Natural Science Foundation of Hebei Province,China(No.F2015202267)the Scientific Innovation Grant for Excellent Young Scientists of Hebei University of Technology(No.2015007)
文摘The cleaning of copper interconnects after chemical mechanical planarization (CMP) process is a crit- ical step in integrated circuits (ICs) fabrication. Benzotriazole (BTA), which is used as corrosion inhibitor in the copper CMP slurry, is the primary source for the formation of organic contaminants. The presence of BTA can degrade the electrical properties and reliability of ICs which needs to be removed by using an effective cleaning solution. In this paper, an alkaline cleaning solution was proposed. The alkaline cleaning solution studied in this work consists of a chelating agent and a nonionic surfactant. The removal of BTA was characterized by contact angle measurements and potentiodynamic polarization studies. The cleaning properties of the proposed cleaning solution on a 300 mm copper patterned wafer were also quantified, total defect counts after cleaning was studied, scanning electron microscopy (SEM) review was used to identify types of BTA to confirm the ability of cleaning solution for BTA removal. All the results reveal that the chelating agent can effectively remove the BTA residual, nonionic surfactant can further improve the performance.
基金The work reported here was supported by the National Natural Science Foundation of China under Grant Nos. 51272117, 51172115, and 50972063, the Natural Science Foundation of Shandong Province under Grant Nos. ZR2011EMZ001, and ZR2011EMQ011, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20123719110003, the Application Foundation Research Program of Qingdao under Grant No. 13-1-4- 117-jch, and the Tackling Key Program of Science and Technology in Shandong Province under Grant No. 2012GGX10218. We express our grateful thanks to them for their financial support.
文摘SiC nanowires with thickness-controlled SiO2 shells have been obtained by a simple and efficient method, namely treatment of SiC/SiO2 core-shell nanowires in NaOH solution. The products were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, infrared (IR) spectroscopy, and photoluminescence spectroscopy. The thickness of the SiO2 shell can be effectively controlled by selecting the appropriate processing time, and pure SiC nanowires were also obtained by alkaline cleaning in 1 mol-L-1 NaOH solution for 40 min at 70 ~C. A mechanism for the removal of the SiO2 shells has been proposed, and a two-phase reaction kinetic equation was derived to explain the rate of the removal of the SiO2 shells. The validity of this equation was verified by experiment. This work not only describes an effective experimental method for achieving SiC nanowires with thickness-controlled SiO2 coatings but also provides a fundamental theoretical equation with a certain level of generality. In addition, photoluminescence (PL) measurement results showed that the SiC nanowires sheathed with an optimum SiO2 thickness (3.03 nm) have better photoluminescence properties than either the bare SiC nanowires or SiC nanowires with thicker coatings of SiO2.