Biochar(BC)is widely applied in agricultural production for its multiple uses such as carbon sequestration.However,application of BC alone has limited effect on soil fertility and crop yield,especially alkaline soil.T...Biochar(BC)is widely applied in agricultural production for its multiple uses such as carbon sequestration.However,application of BC alone has limited effect on soil fertility and crop yield,especially alkaline soil.Therefore,a pot experiment on Chinese cabbage(Brassica rapa var.glabra)was carried out in this study to investigate the effect of BC applied with organic fertilizer(OF)on alkaline soil properties and crop yield.To be specific,BC and OF were respectively applied at 0,1%,2%,and 3%,and Chinese cabbage was transplanted and cultivated for 2.5 months.Results showed that BC and OF increased the content of both organic matter and available P in alkaline soil(P<0.05).Moreover,the application of OF alone decreased the pH value but raised available N content of alkaline soil,and the application of only BC demonstrated the contrary effect(P<0.05).OF significantly improved crop yield(P<0.05),but the effect of BC was insignificant.Crop yield was the highest under the treatment of 1%BC and 3%OF.Thus,BC had limited effect on alkaline soil fertility and crop yield,but the application with OF was a good option for ameliorating alkaline soil and raising crop yield.展开更多
This paper discussed the effects of irrigation with well water on the salinity and pH of a weakly alkaline paddy soil in Fujin of Heilongjiang Province in the north-eastern part of China.It has been found that after s...This paper discussed the effects of irrigation with well water on the salinity and pH of a weakly alkaline paddy soil in Fujin of Heilongjiang Province in the north-eastern part of China.It has been found that after seven years the accumulation of total soluble salts did not occur and that the pH of 0~15 cm layer fell down from 7.92~8.30 to 6.76~7.45,and that the content of anion HCO - 3 and its proportion in the total soluble anions have fallen down.Conversion from paddy soil to upland restored the pH of soil,exchangeable sodium,ESR(exchangeable sodium ratio) to their original levels of upland fields respectively.展开更多
The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio ...The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio (SAR) of different saline soils were studied and compared. Results show that different saline soils exhibit various physico-chemical properties. Saline-sodic soils in Songnen Plain are ameliorated by using nitrogen-fixing blue-green algae 888 in the experiment. It is indicated that cyanobacteria 888 can grow in saline and alkaline soils, and the conditions favorable for its growth are soil moisture of 50% and dry algae inoculation at 0.03 mg/cm2. The main actions of nitrogen-fixing cyanobacteria are keeping the adsorbability of rubber sheath for sodium, increasing the organic matter content of the soils and decreasing the pH and the degree of salinity in the soils. But the arid climate and soil depth are the main factors that limit the restoration of saline and alkaline soils.展开更多
Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil CO2 flux(Fc).However,both the overall contribution of abiotic CO2 exchange and its drivers remain unknown.He...Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil CO2 flux(Fc).However,both the overall contribution of abiotic CO2 exchange and its drivers remain unknown.Here we analyzed the environmental variables suggested as possible drivers by previous studies and constructed a function of these variables to model the contribution of abiotic exchange to Fc in alkaline soils of arid areas.An automated flux system was employed to measure Fc in the Manas River Basin of Xinjiang Uygur autonomous region,China.Soil pH,soil temperature at 0–5 cm(Ts),soil volumetric water content at 0–5 cm(θs)and air temperature at10 cm above the soil surface(Tas)were simultaneously analyzed.Results highlight reduced sensitivity of Fc to Ts and good prediction of Fc by the model Fc=R10Q10(Tas–10)/10+r7q7(pH–7)+λTas+μθs+e which represents Fc as a sum of biotic and abiotic components.This presents an approximate method to quantify the contribution of soil abiotic CO2 exchange to Fc in alkaline soils of arid areas.展开更多
Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cov...Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cover of those years through the artificial planting, mixed seeding lyme grass (Elymus dahuricus Turcz) and melilot in the mode of rotary tillage and deep loosening in lower and medium saline soils. The results showed that there was remarkable relationship between net evaporation (difference of precipitation and evaporation) and total salt content in the soil. The net evaporation could be used as a new method to forecast the dynamics variation of salt to ensure the pasture optimum sowing time. Realize the autumnal vegetation cover of those years through direct planting on the bourgeon layer of soda meadow alkaline soil, on the other hand, the covered pasture made the function of restraining salt and alkaline content to realize the biology reverse succession quickly. Forage seeds were seeded directly on the seeding bed of soda alkaline meadow at the end of July. In fall of the same year, a certain amount of biomass was obtained. The model, which has remarkable economical efficiency and use widely, represented the innovative model for the fast vegetation restoration on the soda alkaline meadow soil.展开更多
The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific consideration...The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels.展开更多
In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected...In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected area, whereas the grazed area was continuously grazed at 8.5 dry sheep equivalent(DSE)/hm2. In the current research, soil and plant samples were taken from grazed and fenced areas to examine changes in vegetation and soil properties in 2005, 2006 and 2008. Results showed that vegetation characteristics and soil properties improved significantly in the fenced area compared with the grazed area. In the protected area the vegetation cover, height and above- and belowground biomass increased significantly. Soil pH, electrical conductivity and bulk density decreased significantly, but soil organic carbon and total nitrogen concentration increased greatly in the protected area. By comparing the vegetation and soil characteristics with pre-degraded grassland, we found that vegetation can recover 6 years after fencing, and soil pH can be restored 8 years after fencing. However, the restoration of soil organic carbon, total nitrogen and total phosphorus concentrations needed 16, 30 and 19 years, respectively. It is recommended that the stocking rate should be reduced to 1/3 of the current carrying capacity, or that a grazing regime of 1-year of grazing followed by a 2-year rest is adopted to sustain the current status of vegetation and soil resources. However, if N fertilizer is applied, the rest period could be shortened, depending on the rate of application.展开更多
Ammonia(NH3) volatilization is one of the primary pathways of nitrogen(N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficien...Ammonia(NH3) volatilization is one of the primary pathways of nitrogen(N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficiency for chemical fertilizers. Therefore, we conducted an incubation experiment using an alkaline soil from Tianjin(p H 8.37–8.43) to evaluate the suppression effect of Trichoderma viride(T. viride) biofertilizer on NH3 volatilization, and compared the differences in microbial community structure among all samples. The results showed that viable T. viride biofertilizer(T) decreased NH3 volatilization by 42.21% compared with conventional fertilizer((CK), urea), while nonviable T. viride biofertilizer(TS) decreased NH3 volatilization by 32.42%. NH3 volatilization was significantly higher in CK and sweet potato starch wastewater(SPSW) treatments during the peak period. T. viride biofertilizer also improved the transfer of ammonium from soil to sweet sorghum. Plant dry weights increased 91.23% and 61.08% for T and TS, respectively, compared to CK. Moreover, T. viride biofertilizer enhanced nitrification by increasing the abundance of ammonium-oxidizing archaea(AOA) and ammonium-oxidizing bacteria(AOB). The results of high-throughput sequencing indicated that the microbial community structure and composition were significantly changed by the application of T. viride biofertilizer. This study demonstrated the immense potential of T. viride biofertilizer in reducing NH3 volatilization from alkaline soil and simultaneously improving the utilization of fertilizer N by sweet sorghum.展开更多
Sulfonylurea(SU) has become one class of the most important herbicides worldwide due to their ultralow application rate and mammalian toxicity. Recently application licenses of 3 classical SU herbicides chlorsulfuro...Sulfonylurea(SU) has become one class of the most important herbicides worldwide due to their ultralow application rate and mammalian toxicity. Recently application licenses of 3 classical SU herbicides chlorsulfuron, metsulfuron-methyl and ethametsulfuron were suspended due to their undesirable long persistence which is incompatible with the particular rotation planting system in China. Our previous study has discovered that electron-donating groups, especially dimethylamino and diethylamino substituents, on the 5 th position of the benzene ring in chlorsulfuron, greatly accelerated its degradation rate in an acidic soil(p H 5.41). Owing to the natural slower degradation of SUs in alkaline soil,dimethylamino and diethylamino substituted chlorsulfuron Ia and Ib were further studied in an alkaline soil(p H 8.46) with chlorsulfuron as a control. The experimental data indicated that the half-life of degradation(DT50) of Ia was 3.36 days while Ib was 6.25 days which amounted to 30 and 15 folds faster than chlorsulfuron(DT5084.53 days), respectively. The research confirmed that our newly-designed structures Ia and Ib can hasten their degradation rate in alkaline soil as well as in acidic soil. This structural modification of the classical SU provided an opportunity to control the degradation rate to reduce their impact on relevant environment and ecology.展开更多
In view of the risks induced by the inhibitory effects of applying impracticably large amounts of sewage sludge biochar(SSB)to the alkaline soil,this field study investigated the influence of moderate biochar amendmen...In view of the risks induced by the inhibitory effects of applying impracticably large amounts of sewage sludge biochar(SSB)to the alkaline soil,this field study investigated the influence of moderate biochar amendments(0,1500,4500,and 9000 kg/hm2)on corn growth,alkaline soil properties,and the uptake of potentially toxic elements(PTEs).The results showed that applying more SSB would decrease the ammonium nitrogen concentration and increase the available phosphorus and potassium concentrations,which inhibited corn plant growth because of high background nutrient levels of the alkaline soil.When the alkaline soil was amended with 1500 kg/hm2 SSB,the dry weight of 100 niblets increased from 32.11 g in the control to 35.07 g.There was no significant variation in the total concentration of PTEs in the soil.The concentrations of Mn,Ni,Cu,and Zn in niblets decreased from 5.54,0.83,2.26,and 27.15 mg/kg in the control to 4.47,0.62,1.30,and 23.45 mg/kg,respectively.Accordingly,the health risk from corn consumption was significantly reduced.Furthermore,the combination of SSB and fertilizer improved corn growth and reduced the risk of consumption of PTEs.Therefore,considering the increase in corn fruit yield and the decrease in consumption risk,applying 1500 kg/hm2 of biochar to alkaline soils is a realistically achievable rate,which can broaden the utilization of SSB for remediation of different types of soil.展开更多
The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole p...The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole phosphate(DMPP)apparently inhibits ammonia oxidizing bacteria(AOB)more than ammonia oxidizing archaea(AOA),which dominate the nitrification in alkaline and acid soil,respectively.However,the efficacy of DMPP in terms of nitrogen sources interacting with soil properties remains unclear.We therefore conducted a microcosm experiment using three typical Chinese agricultural soils with contrasting pH values(fluvo-aquic soil,black soil and red soil),which were fertilized with either digestate or urea in conjunction with a range of DMPP concentrations.In the alkaline fluvo-aquic soil,fertilization with either urea or digestate induced a peak in N_(2)O emission(60μg N kg^(-1)d^(-1))coinciding with the rapid nitrification within 3 d following fertilization.DMPP almost eliminated this peak in N_(2)O emission,reducing it by nearly 90%,despite the fact that the nitrification rate was only reduced by 50%.In the acid black soil,only the digestate induced an N_(2)O emission that increased gradually,reaching its maximum(20μg N kg^(-1)d^(-1))after 5–7 d.The nitrification rate and N_(2)O emission were both marginally reduced by DMPP in the black soil,and the N_(2)O yield(N_(2)O-N per NO2–+NO3–-N produced)was exceptionally high at 3.5%,suggesting that the digestate induced heterotrophic denitrification.In the acid red soil,the N_(2)O emission spiked in the digestate and urea treatments at 50 and 10μg N kg^(-1)d^(-1),respectively,and DMPP reduced the rates substantially by nearly 70%.Compared with 0.5%DMPP,the higher concentrations of DMPP(1.0 to 1.5%)did not exert a significantly(P<0.05)better inhibition effect on the N_(2)O emissions in these soils(either with digestate or urea).This study highlights the importance of matching the nitrogen sources,soil properties and NIs to achieve a high efficiency of N_(2)O emission reduction.展开更多
Due to historical and ongoing industrial practices, lead contamination in urban soils presents substantial health risks, primarily due to its capacity to readily migrate from the soil to humans. This research focused ...Due to historical and ongoing industrial practices, lead contamination in urban soils presents substantial health risks, primarily due to its capacity to readily migrate from the soil to humans. This research focused on the influence of soil pH, organic matter, and clay content on extractable lead amounts. Sixty-four soil samples from Muncie, Indiana, were analyzed, revealing that the examined factors accounted for 21.71% of the Pb mg/Kg-dry variable variance (p −0.4, p < 0.001), with XRD and FTIR analyses confirming the binding affinity of clay minerals with lead. In contrast, no significant relationships were found between Pb concentrations and soil pH (r = 0.07;p = 0.59) or organic matter content (r = 0.12;p = 0.34). Elucidating the interactions between lead, clay minerals, and other soil constituents is crucial for addressing lead-contaminated soils and reducing environmental and health impacts.展开更多
Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic s...Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies.展开更多
Plants show different growth responses to N sources supplied with either NH4^+ or NO3^-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavallability of soil phosphorus, particu...Plants show different growth responses to N sources supplied with either NH4^+ or NO3^-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavallability of soil phosphorus, particularly in alkaline soils. The plant growth, P uptake, and P availability in the rhizosphere of oat (Arena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH4^+-N, sole NO3-N, or a combination. Sole NO^- -fed oat plants accumulated more biomass than sole NH4^+ -fed ones. The highest biomass accumulation was observed when N was supplied with both NH^+ -N and NO3^- -N. Growth of the plant root increased with the proportion of NO3^- in the cultural medium. Better root growth and higher root/shoot ratio were consistently observed in NO3^- fed plants. However, root vigor was the highest when N was supplied with NO3^- +NH4^+. NH4^+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO4 added as P source. No P deficiency was observed, and plant P concentrations were generally above 2 g kg^-1. P uptake was increased when N was supplied partly or solely as NO3^--N, similarly as biomass accumulation. The results suggested that oat was an NO3-preferring plant, and NO3^- -N was essential for plant growth and the maintenance of root absorption capacity. N supply with NH4^+ -N did not improve P nutrition, which was most likely due to the absence of P deficiency.展开更多
Glycinebetaine (Glybet) accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH) act...Glycinebetaine (Glybet) accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH) activity and Glybet accumulation in the seedlings of salt-tolerant and salt-sensitive rice varieties grown under saline and acidic conditions peaked after treatment for 72 h and 96 h, respectively, and were higher than those grown under neutral pH and alkaline salt stress. A positive correlation was found between BADH activity and Glybet content in both salt-tolerant (P=0.71) and salt-sensitive (P=0.86) genotypes. The chlorophyll a, chlorophyll b, total chlorophyll and total carotenoids contents in the stressed seedlings significantly decreased under both acidic and alkaline stresses, especially in the salt-sensitive genotype. Similarly, the maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ФPSII), non-photochemical quenching (NPQ) and net photosynthetic rate (Pn) in the stressed seedlings were inhibited, leading to overall growth reduction. The positive correlations between chlorophyll a content and Fv/Fm, total chlorophyll content and ФPSII, and Pn as well as Pn and leaf area in both salt-tolerant and salt-sensitive genotypes were found. Saline acidic and saline alkaline soils may play a key role affecting vegetative growth prior to the reproductive stage in rice plants.展开更多
In paddy fields, the opposing transformation of arsenic (As) and cadmium (Cd) poses many challenges for their simultaneous remediation.In our previous study,we reported that combined biochar and zero-valent iron(ZVI)a...In paddy fields, the opposing transformation of arsenic (As) and cadmium (Cd) poses many challenges for their simultaneous remediation.In our previous study,we reported that combined biochar and zero-valent iron(ZVI)amendment had great potential for the simultaneous alleviation of As and Cd bioavailability in contaminated acid paddy soil.In this study,an As-and Cd-contaminated alkaline paddy soil was further studied,and the same ZVI-biochar mixtures amendments were applied to evaluate the impact of the mixtures on As and Cd transformation and translocation in the soil-rice system by performing pot experiments with rice.In line with our previous study,the ZVI-biochar composites significantly reduced As and Cd accumulation in different rice tissues,leading to a 42%and 47%decrease in rice grain As and Cd levels,respectively,compared with the control values.The ZVI-biochar mixtures exhibited synergistic effects of biochar and ZVI by enhancing the transformation of bioavailable As and Cd fractions into less bioavailable fractions,and by increasing iron plaque formation to reduce As and Cd bioavailability.Although the bioaccumulation and translocation factors of As and Cd in alkaline paddy soil were generally lower than those in acid paddy soil,particularly in the presence of the ZVI-biochar mixtures,the grain As and Cd levels did not achieve the desired food safety standard levels,probably related to the high soil As content and the small changes in soil pH.Nevertheless,for treating lightly and moderately contaminated paddy soils,ZVI-biochar mixtures can still be a good choice in the future.展开更多
Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production.The reclamation potential of biochar(BC,wheat straw biochar applied at\%by weigh...Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production.The reclamation potential of biochar(BC,wheat straw biochar applied at\%by weight),gypsum(G,0.4%by weight),and gypsum coupled with biochar(GBC)was examined in this laboratory-based study by evaluating their effects on a saline-alkali soil(silt loam)with no amendment as a control(CK).Saline ice and fresh water(simulated rainfall)were leached through soil columns to investigate changes in salt content,sodium adsorption ratio(SAR),alkalinity,and pH of the leachate and the soil.Results showed that saturated water content and field water capacity(FWC)significantly increased by 4.4%and 5.6%,respectively,in the BC treatment after a short incubation time.Co-application of biochar and gypsum(GBC)increased soil saturated hydraulic conductivity(Ks)by 58.4%,which was also significantly higher than the sole addition.Electrical conductivity(EC)of the leachate decreased sharply after saline ice leaching;subsequent freshwater leaching accelerated the removal of the rest of the salts,irrespective of the amendment application.However,the application of gypsum(G and GB)significantly enhanced the removal of exchangeable Na^+and reduced leachate SAR.After leaching,the soil salt content decreased significantly for all treatments.The application of gypsum resulted in a significantly lower soil pH,exchangeable sodium percentage(ESP),SAR,and alkalinity values than those recorded for the CK and BC treatments.These results demonstrated that the co-application of gypsum and biochar could improve saline-alkali soil hydraulic conductivity and decrease leaching-induced sodicity over a short period.展开更多
Strongly acidic soils (pH 〈 5.0) are detrimental to tea (Camellia sinensis) production and quality. Little information exists on the ability of surface amendments to ameliorate subsoil acidity in the tea garden s...Strongly acidic soils (pH 〈 5.0) are detrimental to tea (Camellia sinensis) production and quality. Little information exists on the ability of surface amendments to ameliorate subsoil acidity in the tea garden soils. A 120-d glasshouse column leaching experiment was conducted using commonly available soil ameliorants. Alkaline slag (AS) and organic residues, pig manure (PM) and rapeseed cake (RC) differing in ash alkalinity and C/N ratio were incorporated alone and in combination into the surface (0-15 cm) of soil columns (10 cm internal diameter x 50 cm long) packed with soil from the acidic soil layer (15-30 cm) of an Ultisol (initial pH -- 4.4). During the 120-d experiment, the soil columns were watered (about 127 mm over 9 applications) according to the long-term mean annual rainfall (1 143 mm) and the leachates were collected and analyzed. At the end of the experiment, soil columns were partitioned into various depths and the chemical properties of soil were measured. The PM with a higher C/N ratio increased subsoil pH, whereas the RC with a lower C/N ratio decreased subsoil pH. However, combined amendments had a greater ability to reduce subsoil acidity than either of the amendments alone. The increases in pH of the subsoil were mainly ascribed to decreased base cation concentrations and the decomposition of organic anions present in dissolved organic carbon (DOC) and immobilization of nitrate that had been leached down from the amended layer. A significant (P 〈 0.05) correlation between alkalinity production (reduced exchangeable acidity - N-cycle alkalinity) and alkalinity balance (net alkalinity production - N-cycle alkalinity) was observed at the end of the experiment. Additionally, combined amendments significantly increased (P ~ 0.05) subsoil cation concentrations and decreased subsoil A1 saturation (P 〈 0.05). Combined applications of AS with organic amendments to surface soils are effective in reducing subsoil acidity in high-rainfall areas. Further investigations under field conditions and over longer timeframes are needed to fully understand their practical effectiveness in ameliorating acidity of deeper soil layers under naturally occurring leaching regimes.展开更多
Background:Tall wheatgrass is a perennial salt-tolerant bunchgrass,which is a promising candidate for establishing a“Coastal Grass Belt”in China,particularly in the coastal saline–alkaline soils surrounding the Boh...Background:Tall wheatgrass is a perennial salt-tolerant bunchgrass,which is a promising candidate for establishing a“Coastal Grass Belt”in China,particularly in the coastal saline–alkaline soils surrounding the Bohai Sea.Methods:Seven harvesting treatments were performed to explore the optimal harvesting time and frequency for tall wheatgrass in coastal area.The dry matter yield(DMY)and forage nutritional values were investigated for each cut.The correlation between harvesting time and frequency thereof among the investigated traits was also determined.Results:The results showed that the two-cut on June 18 and October 29 produced the highest DMY.Another two-cut on May 26 and October 29 produced a relatively high crude protein(CP)yield.The DMY,contents of neutral detergent fiber(NDF),acid detergent fiber(ADF),and crude cellulose(CC)as well as CP yield were positively correlated to plant height,while the CP content and the relative feed value(RFV)were negatively correlated to plant height.The accumulating growing degree days,accumulated precipitation,and sunshine duration were positively correlated with plant height,DMY,contents of NDF,ADF,and CC as well as CP yield,but negatively correlated with CP content and RFV for the first cut.Conclusions:The two-cut treatment at the end of May and October may be suitable for tall wheatgrass in the“Coastal Grass Belt”targeted area.展开更多
文摘Biochar(BC)is widely applied in agricultural production for its multiple uses such as carbon sequestration.However,application of BC alone has limited effect on soil fertility and crop yield,especially alkaline soil.Therefore,a pot experiment on Chinese cabbage(Brassica rapa var.glabra)was carried out in this study to investigate the effect of BC applied with organic fertilizer(OF)on alkaline soil properties and crop yield.To be specific,BC and OF were respectively applied at 0,1%,2%,and 3%,and Chinese cabbage was transplanted and cultivated for 2.5 months.Results showed that BC and OF increased the content of both organic matter and available P in alkaline soil(P<0.05).Moreover,the application of OF alone decreased the pH value but raised available N content of alkaline soil,and the application of only BC demonstrated the contrary effect(P<0.05).OF significantly improved crop yield(P<0.05),but the effect of BC was insignificant.Crop yield was the highest under the treatment of 1%BC and 3%OF.Thus,BC had limited effect on alkaline soil fertility and crop yield,but the application with OF was a good option for ameliorating alkaline soil and raising crop yield.
文摘This paper discussed the effects of irrigation with well water on the salinity and pH of a weakly alkaline paddy soil in Fujin of Heilongjiang Province in the north-eastern part of China.It has been found that after seven years the accumulation of total soluble salts did not occur and that the pH of 0~15 cm layer fell down from 7.92~8.30 to 6.76~7.45,and that the content of anion HCO - 3 and its proportion in the total soluble anions have fallen down.Conversion from paddy soil to upland restored the pH of soil,exchangeable sodium,ESR(exchangeable sodium ratio) to their original levels of upland fields respectively.
基金Sponsored by the Major State Scientific and Technological Projects of Water Pollution Control and Treatment(Grant No.2008ZX07208-005)
文摘The salt-resistant nitrogen-fixing cyanobacteria 888 was experimentally applied to the reclamation of saline and alkali soil in Songnen Plain in China. The pH, electrical conductivity (EC) and sodium adsorption ratio (SAR) of different saline soils were studied and compared. Results show that different saline soils exhibit various physico-chemical properties. Saline-sodic soils in Songnen Plain are ameliorated by using nitrogen-fixing blue-green algae 888 in the experiment. It is indicated that cyanobacteria 888 can grow in saline and alkaline soils, and the conditions favorable for its growth are soil moisture of 50% and dry algae inoculation at 0.03 mg/cm2. The main actions of nitrogen-fixing cyanobacteria are keeping the adsorbability of rubber sheath for sodium, increasing the organic matter content of the soils and decreasing the pH and the degree of salinity in the soils. But the arid climate and soil depth are the main factors that limit the restoration of saline and alkaline soils.
基金supported by the National Basic Research Program of China(2009CB825105)
文摘Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil CO2 flux(Fc).However,both the overall contribution of abiotic CO2 exchange and its drivers remain unknown.Here we analyzed the environmental variables suggested as possible drivers by previous studies and constructed a function of these variables to model the contribution of abiotic exchange to Fc in alkaline soils of arid areas.An automated flux system was employed to measure Fc in the Manas River Basin of Xinjiang Uygur autonomous region,China.Soil pH,soil temperature at 0–5 cm(Ts),soil volumetric water content at 0–5 cm(θs)and air temperature at10 cm above the soil surface(Tas)were simultaneously analyzed.Results highlight reduced sensitivity of Fc to Ts and good prediction of Fc by the model Fc=R10Q10(Tas–10)/10+r7q7(pH–7)+λTas+μθs+e which represents Fc as a sum of biotic and abiotic components.This presents an approximate method to quantify the contribution of soil abiotic CO2 exchange to Fc in alkaline soils of arid areas.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest (200903001-06-6)
文摘Researches on models of remediation quickly in soda meadow alkaline soil, and dynamic variation of water-salt in saline soil of Zhaozhou County were studied systematically from 2001 to 2006. Realize the vegetation cover of those years through the artificial planting, mixed seeding lyme grass (Elymus dahuricus Turcz) and melilot in the mode of rotary tillage and deep loosening in lower and medium saline soils. The results showed that there was remarkable relationship between net evaporation (difference of precipitation and evaporation) and total salt content in the soil. The net evaporation could be used as a new method to forecast the dynamics variation of salt to ensure the pasture optimum sowing time. Realize the autumnal vegetation cover of those years through direct planting on the bourgeon layer of soda meadow alkaline soil, on the other hand, the covered pasture made the function of restraining salt and alkaline content to realize the biology reverse succession quickly. Forage seeds were seeded directly on the seeding bed of soda alkaline meadow at the end of July. In fall of the same year, a certain amount of biomass was obtained. The model, which has remarkable economical efficiency and use widely, represented the innovative model for the fast vegetation restoration on the soda alkaline meadow soil.
文摘The necessity to saline and sodic waters is sometimes used for irrigating agricultural activities under certain circumstances, but it is important to note that the use of these waters comes with specific considerations and limitations. One way to decrease undesirable effects of sodic waters on the physical and chemical properties of soils is to apply organic and chemical amendments within the soil. This study aimed to assess the effectiveness of saline water on soil acidity, alkalinity and nutrients leaching in sandy loamy soil at Bella flower farm, in Rwamagana District, Rwanda. The water used was from the Muhazi Lake which is classified as Class I (Saline water quality). Column leaching experiments using treated soils were then conducted under saturated conditions. The soil under experimental was first analyzed for its textural classification, soil properties and is classified as sandy loamy soil. The t-test was taken at 1%, 5% and 10% levels of statistical significance compared to control soil. The results indicated that the application of saline water to soils caused an increase in some soil nutrients like increase of Phosphorus (P), Potassium (K<sup>+</sup>), Magnesium (Mg2<sup>+</sup>), Sulphur (S), CN ratio and Sodium (Na<sup>+</sup>) and decreased soil texture, physical and chemical properties and remained soil nutrients. Consequently, the intensive addition of saline water leachates to soil in PVC pipes led to decreased of soil EC through leaching and a raiser Soluble Sodium Percentage (SSP). The rate of saline water application affected the increase accumulation of SAR and Na% in the top soil layers. The study indicated that saline water is an inefficient amendment for sandy soil with saline water irrigation. The study recommends further studies with similar topic with saline water irrigation, as it accentuated the alkalinity levels.
基金supported by the National Key Basic Research Program of China (2011CB403203)the Strategic Science and Technology Guide Project of Chinese Academy of Sciences (XDA05050401)
文摘In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected area, whereas the grazed area was continuously grazed at 8.5 dry sheep equivalent(DSE)/hm2. In the current research, soil and plant samples were taken from grazed and fenced areas to examine changes in vegetation and soil properties in 2005, 2006 and 2008. Results showed that vegetation characteristics and soil properties improved significantly in the fenced area compared with the grazed area. In the protected area the vegetation cover, height and above- and belowground biomass increased significantly. Soil pH, electrical conductivity and bulk density decreased significantly, but soil organic carbon and total nitrogen concentration increased greatly in the protected area. By comparing the vegetation and soil characteristics with pre-degraded grassland, we found that vegetation can recover 6 years after fencing, and soil pH can be restored 8 years after fencing. However, the restoration of soil organic carbon, total nitrogen and total phosphorus concentrations needed 16, 30 and 19 years, respectively. It is recommended that the stocking rate should be reduced to 1/3 of the current carrying capacity, or that a grazing regime of 1-year of grazing followed by a 2-year rest is adopted to sustain the current status of vegetation and soil resources. However, if N fertilizer is applied, the rest period could be shortened, depending on the rate of application.
基金supported by the National Science Fund Projects (Nos. 41371266 and 31670507)Innovation in Cross-functional Team Program of the Chinese Academy of Sciences (No. 2015)+1 种基金the Key Research Program of Chinese Academy of Sciences (No. ZDRW-ZS-2016-5)the Key State Science and Technology Program of China (No. 2015ZX07206-006)
文摘Ammonia(NH3) volatilization is one of the primary pathways of nitrogen(N) loss from soils after chemical fertilizer is applied, especially from the alkaline soils in Northern China, which results in lower efficiency for chemical fertilizers. Therefore, we conducted an incubation experiment using an alkaline soil from Tianjin(p H 8.37–8.43) to evaluate the suppression effect of Trichoderma viride(T. viride) biofertilizer on NH3 volatilization, and compared the differences in microbial community structure among all samples. The results showed that viable T. viride biofertilizer(T) decreased NH3 volatilization by 42.21% compared with conventional fertilizer((CK), urea), while nonviable T. viride biofertilizer(TS) decreased NH3 volatilization by 32.42%. NH3 volatilization was significantly higher in CK and sweet potato starch wastewater(SPSW) treatments during the peak period. T. viride biofertilizer also improved the transfer of ammonium from soil to sweet sorghum. Plant dry weights increased 91.23% and 61.08% for T and TS, respectively, compared to CK. Moreover, T. viride biofertilizer enhanced nitrification by increasing the abundance of ammonium-oxidizing archaea(AOA) and ammonium-oxidizing bacteria(AOB). The results of high-throughput sequencing indicated that the microbial community structure and composition were significantly changed by the application of T. viride biofertilizer. This study demonstrated the immense potential of T. viride biofertilizer in reducing NH3 volatilization from alkaline soil and simultaneously improving the utilization of fertilizer N by sweet sorghum.
基金supported by the National Natural Science Foundation of China (No. 21272129)the State Key Laboratory of Elemento-Organic Chemistry (Nankai University)+1 种基金Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Syngenta PhD Scholarship
文摘Sulfonylurea(SU) has become one class of the most important herbicides worldwide due to their ultralow application rate and mammalian toxicity. Recently application licenses of 3 classical SU herbicides chlorsulfuron, metsulfuron-methyl and ethametsulfuron were suspended due to their undesirable long persistence which is incompatible with the particular rotation planting system in China. Our previous study has discovered that electron-donating groups, especially dimethylamino and diethylamino substituents, on the 5 th position of the benzene ring in chlorsulfuron, greatly accelerated its degradation rate in an acidic soil(p H 5.41). Owing to the natural slower degradation of SUs in alkaline soil,dimethylamino and diethylamino substituted chlorsulfuron Ia and Ib were further studied in an alkaline soil(p H 8.46) with chlorsulfuron as a control. The experimental data indicated that the half-life of degradation(DT50) of Ia was 3.36 days while Ib was 6.25 days which amounted to 30 and 15 folds faster than chlorsulfuron(DT5084.53 days), respectively. The research confirmed that our newly-designed structures Ia and Ib can hasten their degradation rate in alkaline soil as well as in acidic soil. This structural modification of the classical SU provided an opportunity to control the degradation rate to reduce their impact on relevant environment and ecology.
基金supported by the National Key Research and Development Project[2020YFC1908904]Science and Technology Program of Xiamen[3502Z20193076]+1 种基金Natural Science Foundation of Fujian Province[2019J01135]Strategic Priority Research Program of the Chinese Academy of Sciences[XDA23020504]。
文摘In view of the risks induced by the inhibitory effects of applying impracticably large amounts of sewage sludge biochar(SSB)to the alkaline soil,this field study investigated the influence of moderate biochar amendments(0,1500,4500,and 9000 kg/hm2)on corn growth,alkaline soil properties,and the uptake of potentially toxic elements(PTEs).The results showed that applying more SSB would decrease the ammonium nitrogen concentration and increase the available phosphorus and potassium concentrations,which inhibited corn plant growth because of high background nutrient levels of the alkaline soil.When the alkaline soil was amended with 1500 kg/hm2 SSB,the dry weight of 100 niblets increased from 32.11 g in the control to 35.07 g.There was no significant variation in the total concentration of PTEs in the soil.The concentrations of Mn,Ni,Cu,and Zn in niblets decreased from 5.54,0.83,2.26,and 27.15 mg/kg in the control to 4.47,0.62,1.30,and 23.45 mg/kg,respectively.Accordingly,the health risk from corn consumption was significantly reduced.Furthermore,the combination of SSB and fertilizer improved corn growth and reduced the risk of consumption of PTEs.Therefore,considering the increase in corn fruit yield and the decrease in consumption risk,applying 1500 kg/hm2 of biochar to alkaline soils is a realistically achievable rate,which can broaden the utilization of SSB for remediation of different types of soil.
基金supported by the National Natural Science Foundation of China(31861133018,41830751,42107320)the Hainan University Startup Fund,China(KYQD(ZR)-20098).
文摘The inhibition of nitrification by mixing nitrification inhibitors(NI)with fertilizers is emerging as an effective method to reduce fertilizer-induced nitrous oxide(N_(2)O)emissions.The additive 3,4-dimethylpyrazole phosphate(DMPP)apparently inhibits ammonia oxidizing bacteria(AOB)more than ammonia oxidizing archaea(AOA),which dominate the nitrification in alkaline and acid soil,respectively.However,the efficacy of DMPP in terms of nitrogen sources interacting with soil properties remains unclear.We therefore conducted a microcosm experiment using three typical Chinese agricultural soils with contrasting pH values(fluvo-aquic soil,black soil and red soil),which were fertilized with either digestate or urea in conjunction with a range of DMPP concentrations.In the alkaline fluvo-aquic soil,fertilization with either urea or digestate induced a peak in N_(2)O emission(60μg N kg^(-1)d^(-1))coinciding with the rapid nitrification within 3 d following fertilization.DMPP almost eliminated this peak in N_(2)O emission,reducing it by nearly 90%,despite the fact that the nitrification rate was only reduced by 50%.In the acid black soil,only the digestate induced an N_(2)O emission that increased gradually,reaching its maximum(20μg N kg^(-1)d^(-1))after 5–7 d.The nitrification rate and N_(2)O emission were both marginally reduced by DMPP in the black soil,and the N_(2)O yield(N_(2)O-N per NO2–+NO3–-N produced)was exceptionally high at 3.5%,suggesting that the digestate induced heterotrophic denitrification.In the acid red soil,the N_(2)O emission spiked in the digestate and urea treatments at 50 and 10μg N kg^(-1)d^(-1),respectively,and DMPP reduced the rates substantially by nearly 70%.Compared with 0.5%DMPP,the higher concentrations of DMPP(1.0 to 1.5%)did not exert a significantly(P<0.05)better inhibition effect on the N_(2)O emissions in these soils(either with digestate or urea).This study highlights the importance of matching the nitrogen sources,soil properties and NIs to achieve a high efficiency of N_(2)O emission reduction.
文摘Due to historical and ongoing industrial practices, lead contamination in urban soils presents substantial health risks, primarily due to its capacity to readily migrate from the soil to humans. This research focused on the influence of soil pH, organic matter, and clay content on extractable lead amounts. Sixty-four soil samples from Muncie, Indiana, were analyzed, revealing that the examined factors accounted for 21.71% of the Pb mg/Kg-dry variable variance (p −0.4, p < 0.001), with XRD and FTIR analyses confirming the binding affinity of clay minerals with lead. In contrast, no significant relationships were found between Pb concentrations and soil pH (r = 0.07;p = 0.59) or organic matter content (r = 0.12;p = 0.34). Elucidating the interactions between lead, clay minerals, and other soil constituents is crucial for addressing lead-contaminated soils and reducing environmental and health impacts.
基金financially supported by the the National Key Research and Development Program of China(2016YFD0300104)the Heilongjiang Bayi Agricultural University Program for Young Scholars with Creative Talents,China(CXRC2017001)+1 种基金the Heilongjiang Bayi Agricultural University Support Program for San Heng San Zong,China(TDJH201802)the Graduate Innovative Research Projects,China(YJSCX2019-Y104)。
文摘Soil salinity and alkalinity can inhibit crop growth and reduce yield,and this has become a global environmental concern.Combined changes in nitrogen (N) application and hill density can improve rice yields in sodic saline–alkaline paddy fields and protect the environment.We investigated the interactive effects of N application rate and hill density on rice yield and N accumulation,translocation and utilization in two field experiments during 2018 and 2019 in sodic saline–alkaline paddy fields.Five N application rates (0 (control),90,120,150,and 180 kg N ha^(-1) (N0–N4),respectively) and three hill densities(achieved by altering the distance between hills,in rows spaced 30 cm apart:16.5 cm (D1),13.3 cm (D2) and 10 cm (D3))were utilized in a split-plot design with three replicates.Nitrogen application rate and hill density significantly affected grain yield.The mathematical model of quadratic saturated D-optimal design showed that with an N application rate in the range of 0–180 kg N ha^(-1),the highest yield was obtained at 142.61 kg N ha^(-1) which matched with a planting density of 33.3×10^(4) ha^(-1).Higher grain yield was mainly attributed to the increase in panicles m^(–2).Nitrogen application rate and hill density significantly affected N accumulation in the aboveground parts of rice plants and showed a highly significant positive correlation with grain yield at maturity.From full heading to maturity,the average N loss rate of the aboveground parts of rice plants in N4 was 70.21% higher than that of N3.This is one of the reasons why the yield of N4 treatment is lower than that of the N3 treatment.Nitrogen accumulation rates in the aboveground parts under treatment N3 (150 kg N ha^(-1)) were 81.68 and 106.07% higher in 2018 and 2019,respectively,than those in the control.The N translocation and N translocation contribution rates increased with the increase in the N application rate and hill density,whereas N productivity of dry matter and grain first increased and then decreased with the increase in N application rate and hill density.Agronomic N-use efficiency decreased with an increase in N application rate,whereas hill density did not significantly affect it.Nitrogen productivity of dry matter and grain,and agronomic N-use efficiency,were negatively correlated with grain yield.Thus,rice yield in sodic saline–alkaline paddy fields can be improved by combined changes in the N application rate and hill density to promote aboveground N accumulation.Our study provides novel evidence regarding optimal N application rates and hill densities for sodic saline–alkaline rice paddies.
基金Project supported by the National Natural Science Foundation Council of China (No.30660086)the Natural Science Foundation of Inner Mongolia of China (No.200607010302)+2 种基金Hong Kong Research Grants Council (No.2465/05M)Hong Kong University Grants Committee (No.AOE/B-07/99)Hong Kong Baptist University Matching Research Fund.
文摘Plants show different growth responses to N sources supplied with either NH4^+ or NO3^-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavallability of soil phosphorus, particularly in alkaline soils. The plant growth, P uptake, and P availability in the rhizosphere of oat (Arena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH4^+-N, sole NO3-N, or a combination. Sole NO^- -fed oat plants accumulated more biomass than sole NH4^+ -fed ones. The highest biomass accumulation was observed when N was supplied with both NH^+ -N and NO3^- -N. Growth of the plant root increased with the proportion of NO3^- in the cultural medium. Better root growth and higher root/shoot ratio were consistently observed in NO3^- fed plants. However, root vigor was the highest when N was supplied with NO3^- +NH4^+. NH4^+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO4 added as P source. No P deficiency was observed, and plant P concentrations were generally above 2 g kg^-1. P uptake was increased when N was supplied partly or solely as NO3^--N, similarly as biomass accumulation. The results suggested that oat was an NO3-preferring plant, and NO3^- -N was essential for plant growth and the maintenance of root absorption capacity. N supply with NH4^+ -N did not improve P nutrition, which was most likely due to the absence of P deficiency.
基金supported by the National Center for Genetic Engineering and Biotechnology (BIOTEC) (Grant No. BT-B-06-RG-14-4502)partly funded by the International Atomic Energy Agency (IAEA) (Contract No. 12998/R0)
文摘Glycinebetaine (Glybet) accumulation, photosynthetic efficiency and growth performance in indica rice cultivated under salt stress and extreme pH stress were investigated. Betaine aldehyde dehydrogenase (BADH) activity and Glybet accumulation in the seedlings of salt-tolerant and salt-sensitive rice varieties grown under saline and acidic conditions peaked after treatment for 72 h and 96 h, respectively, and were higher than those grown under neutral pH and alkaline salt stress. A positive correlation was found between BADH activity and Glybet content in both salt-tolerant (P=0.71) and salt-sensitive (P=0.86) genotypes. The chlorophyll a, chlorophyll b, total chlorophyll and total carotenoids contents in the stressed seedlings significantly decreased under both acidic and alkaline stresses, especially in the salt-sensitive genotype. Similarly, the maximum quantum yield of PSII (Fv/Fm), photon yield of PSII (ФPSII), non-photochemical quenching (NPQ) and net photosynthetic rate (Pn) in the stressed seedlings were inhibited, leading to overall growth reduction. The positive correlations between chlorophyll a content and Fv/Fm, total chlorophyll content and ФPSII, and Pn as well as Pn and leaf area in both salt-tolerant and salt-sensitive genotypes were found. Saline acidic and saline alkaline soils may play a key role affecting vegetative growth prior to the reproductive stage in rice plants.
基金the National Natural Science Foundation of China(41420104007 and 41671472)the Special Support Plan for High-level Talents of Guangdong,China(2016TQ03Z565)Guangdong Academy of Sciences’Projects(2019GDASYL-0103050,2018GDASCX-0501,and 2017GDASCX-0106).
文摘In paddy fields, the opposing transformation of arsenic (As) and cadmium (Cd) poses many challenges for their simultaneous remediation.In our previous study,we reported that combined biochar and zero-valent iron(ZVI)amendment had great potential for the simultaneous alleviation of As and Cd bioavailability in contaminated acid paddy soil.In this study,an As-and Cd-contaminated alkaline paddy soil was further studied,and the same ZVI-biochar mixtures amendments were applied to evaluate the impact of the mixtures on As and Cd transformation and translocation in the soil-rice system by performing pot experiments with rice.In line with our previous study,the ZVI-biochar composites significantly reduced As and Cd accumulation in different rice tissues,leading to a 42%and 47%decrease in rice grain As and Cd levels,respectively,compared with the control values.The ZVI-biochar mixtures exhibited synergistic effects of biochar and ZVI by enhancing the transformation of bioavailable As and Cd fractions into less bioavailable fractions,and by increasing iron plaque formation to reduce As and Cd bioavailability.Although the bioaccumulation and translocation factors of As and Cd in alkaline paddy soil were generally lower than those in acid paddy soil,particularly in the presence of the ZVI-biochar mixtures,the grain As and Cd levels did not achieve the desired food safety standard levels,probably related to the high soil As content and the small changes in soil pH.Nevertheless,for treating lightly and moderately contaminated paddy soils,ZVI-biochar mixtures can still be a good choice in the future.
基金This study was jointly supported by the National Key Research and Development Project of China(No.2016YFD0200303)the Natural Science Foundation of China-Shandong Joint Key Project(Nos.U 1806215 and U1906221)+1 种基金the Key Project of Chinese Academy of Sciences(No.KFZD-SW-112-03-02)the National Natural Science Foundation of China(No.41977015).
文摘Salt and sodicity of saline-alkali soil adversely affect the construction of ecological landscapes and negatively impact crop production.The reclamation potential of biochar(BC,wheat straw biochar applied at\%by weight),gypsum(G,0.4%by weight),and gypsum coupled with biochar(GBC)was examined in this laboratory-based study by evaluating their effects on a saline-alkali soil(silt loam)with no amendment as a control(CK).Saline ice and fresh water(simulated rainfall)were leached through soil columns to investigate changes in salt content,sodium adsorption ratio(SAR),alkalinity,and pH of the leachate and the soil.Results showed that saturated water content and field water capacity(FWC)significantly increased by 4.4%and 5.6%,respectively,in the BC treatment after a short incubation time.Co-application of biochar and gypsum(GBC)increased soil saturated hydraulic conductivity(Ks)by 58.4%,which was also significantly higher than the sole addition.Electrical conductivity(EC)of the leachate decreased sharply after saline ice leaching;subsequent freshwater leaching accelerated the removal of the rest of the salts,irrespective of the amendment application.However,the application of gypsum(G and GB)significantly enhanced the removal of exchangeable Na^+and reduced leachate SAR.After leaching,the soil salt content decreased significantly for all treatments.The application of gypsum resulted in a significantly lower soil pH,exchangeable sodium percentage(ESP),SAR,and alkalinity values than those recorded for the CK and BC treatments.These results demonstrated that the co-application of gypsum and biochar could improve saline-alkali soil hydraulic conductivity and decrease leaching-induced sodicity over a short period.
基金This study was supported by the National Natural Science Foundation of China (No. 41401336), the Na- tural Science Foundation of Jiangsu Province, China (No. BK20130105), the State Key Laboratory of Soil and Sustainable Agriculture, Chinese Academy of Sci-ence (No. Y412201452), and the Environmental Pro- tection Public Benefit Research Foundation of China (No. 201309036). We thank the three anonymous refe- rees for their helpful comments.
文摘Strongly acidic soils (pH 〈 5.0) are detrimental to tea (Camellia sinensis) production and quality. Little information exists on the ability of surface amendments to ameliorate subsoil acidity in the tea garden soils. A 120-d glasshouse column leaching experiment was conducted using commonly available soil ameliorants. Alkaline slag (AS) and organic residues, pig manure (PM) and rapeseed cake (RC) differing in ash alkalinity and C/N ratio were incorporated alone and in combination into the surface (0-15 cm) of soil columns (10 cm internal diameter x 50 cm long) packed with soil from the acidic soil layer (15-30 cm) of an Ultisol (initial pH -- 4.4). During the 120-d experiment, the soil columns were watered (about 127 mm over 9 applications) according to the long-term mean annual rainfall (1 143 mm) and the leachates were collected and analyzed. At the end of the experiment, soil columns were partitioned into various depths and the chemical properties of soil were measured. The PM with a higher C/N ratio increased subsoil pH, whereas the RC with a lower C/N ratio decreased subsoil pH. However, combined amendments had a greater ability to reduce subsoil acidity than either of the amendments alone. The increases in pH of the subsoil were mainly ascribed to decreased base cation concentrations and the decomposition of organic anions present in dissolved organic carbon (DOC) and immobilization of nitrate that had been leached down from the amended layer. A significant (P 〈 0.05) correlation between alkalinity production (reduced exchangeable acidity - N-cycle alkalinity) and alkalinity balance (net alkalinity production - N-cycle alkalinity) was observed at the end of the experiment. Additionally, combined amendments significantly increased (P ~ 0.05) subsoil cation concentrations and decreased subsoil A1 saturation (P 〈 0.05). Combined applications of AS with organic amendments to surface soils are effective in reducing subsoil acidity in high-rainfall areas. Further investigations under field conditions and over longer timeframes are needed to fully understand their practical effectiveness in ameliorating acidity of deeper soil layers under naturally occurring leaching regimes.
基金Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDA26040105。
文摘Background:Tall wheatgrass is a perennial salt-tolerant bunchgrass,which is a promising candidate for establishing a“Coastal Grass Belt”in China,particularly in the coastal saline–alkaline soils surrounding the Bohai Sea.Methods:Seven harvesting treatments were performed to explore the optimal harvesting time and frequency for tall wheatgrass in coastal area.The dry matter yield(DMY)and forage nutritional values were investigated for each cut.The correlation between harvesting time and frequency thereof among the investigated traits was also determined.Results:The results showed that the two-cut on June 18 and October 29 produced the highest DMY.Another two-cut on May 26 and October 29 produced a relatively high crude protein(CP)yield.The DMY,contents of neutral detergent fiber(NDF),acid detergent fiber(ADF),and crude cellulose(CC)as well as CP yield were positively correlated to plant height,while the CP content and the relative feed value(RFV)were negatively correlated to plant height.The accumulating growing degree days,accumulated precipitation,and sunshine duration were positively correlated with plant height,DMY,contents of NDF,ADF,and CC as well as CP yield,but negatively correlated with CP content and RFV for the first cut.Conclusions:The two-cut treatment at the end of May and October may be suitable for tall wheatgrass in the“Coastal Grass Belt”targeted area.