期刊文献+
共找到1,016篇文章
< 1 2 51 >
每页显示 20 50 100
The coupling control of biological precursors and environmental factors onβ-carotane enrichment in alkaline lacustrine source rocks:A case study from the Fengcheng formation in the western Junggar Basin,NW China 被引量:1
1
作者 Mao-Guo Hou Ming Zha +5 位作者 Hua Liu Hai-Lei Liu Jiang-Xiu Qu Ablimit Imin Xiu-Jian Ding Zhong-Fa Jiang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期836-854,共19页
The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well... The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions. 展开更多
关键词 β-carotane enrichment Cyanobacterial input Environmental impact alkaline lacustrine source rocks The Fengcheng formation
下载PDF
Recent advances and future prospects on Ni_(3)S_(2)-Based electrocatalysts for efficient alkaline water electrolysis 被引量:1
2
作者 Shiwen Wang Zhen Geng +4 位作者 Songhu Bi Yuwei Wang Zijian Gao Liming Jin Cunman Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期659-683,共25页
Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic... Green hydrogen(H_(2))produced by renewable energy powered alkaline water electrolysis is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.However,efficient and economic H_(2) production by alkaline water electrolysis is hindered by the sluggish hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Therefore,it is imperative to design and fabricate high-active and low-cost non-precious metal catalysts to improve the HER and OER performance,which affects the energy efficiency of alkaline water electrolysis.Ni_(3)S_(2) with the heazlewoodite structure is a potential electrocatalyst with near-metal conductivity due to the Ni–Ni metal network.Here,the review comprehensively presents the recent progress of Ni_(3)S_(2)-based electrocatalysts for alkaline water electrocatalysis.Herein,the HER and OER mechanisms,performance evaluation criteria,preparation methods,and strategies for performance improvement of Ni_(3)S_(2)-based electrocatalysts are discussed.The challenges and perspectives are also analyzed. 展开更多
关键词 alkaline water electrolysis HYDROGEN ELECTROCATALYSTS Ni_(3)S_(2)
下载PDF
Maskless fabrication of quasi-omnidirectional V-groove solar cells using an alkaline solution-based method
3
作者 陈兴谦 王燕 +6 位作者 陈伟 刘尧平 邢国光 冯博文 李昊臻 孙纵横 杜小龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期236-242,共7页
Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid text... Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p–n junction quality and better applied filling factor(FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency(21.78%) than pyramid solar cells(21.62%). Interestingly, external quantum efficiency(EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle(θ) is increased from 0° to 75°, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells. 展开更多
关键词 V-groove alkaline etching quasi omnidirectionality silicon solar cell
下载PDF
A novel multi-channel porous structure facilitating mass transport towards highly efficient alkaline water electrolysis
4
作者 Xinge Jiang Vasileios Kyriakou +6 位作者 Chen Song Xianbin Wang Sophie Costil Chunming Deng Taikai Liu Tao Jiang Hanlin Liao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期511-518,I0013,共9页
An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced w... An advantageous porous architecture of electrodes is pivotal in significantly enhancing alkaline water electrolysis(AWE)efficiency by optimizing the mass transport mechanisms.This effect becomes even more pronounced when aiming to achieve elevated current densities.Herein,we employed a rapid and scalable laser texturing process to craft novel multi-channel porous electrodes.Particularly,the obtained electrodes exhibit the lowest Tafel slope of 79 mV dec^(-1)(HER)and 49 mV dec^(-1)(OER).As anticipated,the alkaline electrolyzer(AEL)cell incorporating multi-channel porous electrodes(NP-LT30)exhibited a remarkable improvement in cell efficiency,with voltage drops(from 2.28 to 1.97 V)exceeding 300 mV under 1 A cm^(-1),compared to conventional perforated Ni plate electrodes.This enhancement mainly stemmed from the employed multi-channel porous structure,facilitating mass transport and bubble dynamics through an innovative convection mode,surpassing the traditional convection mode.Furthermore,the NP-LT30-based AEL cell demonstrated exceptional durability for 300 h under 1.0 A cm^(-2).This study underscores the capability of the novel multi-channel porous electrodes to expedite mass transport in practical AWE applications. 展开更多
关键词 alkaline water electrolysis Mass transport Bubble dynamics Innovative convection mode Multi-channel porous structure
下载PDF
Influences of different alkaline and acidic diagenetic environments on diagenetic evolution and reservoir quality of alkaline lake shales
5
作者 LI Changzhi GUO Pei +2 位作者 XU Jinghong ZHONG Kai WEN Huaguo 《Petroleum Exploration and Development》 SCIE 2024年第1期97-113,共17页
Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in differen... Thin section and argon-ion polishing scanning electron microscope observations were used to analyze the sedimentary and diagenetic environments and main diagenesis of the Permian Fengcheng Formation shales in different depositional zones of Mahu Sag in the Junggar Basin,and to reconstruct their differential diagenetic evolutional processes.The diagenetic environment of shales in the lake-central zone kept alkaline,which mainly underwent the early stage(Ro<0.5%)dominated by the authigenesis of Na-carbonates and K-feldspar and the late stage(Ro>0.5%)dominated by the replacement of Na-carbonates by reedmergnerite.The shales from the marginal zone underwent a transition from weak alkaline to acidic diagenetic environments,with the early stage dominated by the authigenesis of Mg-bearing clay and silica and the late stage dominated by the dissolution of feldspar and carbonate minerals.The shales from the transitional zone also underwent a transition from an early alkaline diagenetic environment,evidenced by the formation of dolomite and zeolite,to a late acidic diagenetic environment,represented by the reedmergnerite replacement and silicification of feldspar and carbonate minerals.The differences in formation of authigenic minerals during early diagenetic stage determine the fracability of shales.The differences in dissolution of minerals during late diagenetic stage control the content of free shale oil.Dolomitic shale in the transitional zone and siltstone in the marginal zone have relatively high content of free shale oil and strong fracability,and are favorable“sweet spots”for shale oil exploitation and development. 展开更多
关键词 shale diagenesis alkaline environment authigenic minerals dissolution Permian Fengcheng Formation Mahu Sag Junggar Basin
下载PDF
An efficient and mild recycling of waste melamine formaldehyde foams by alkaline hydrolysis
6
作者 Shaodi Wu Ning Zhang +7 位作者 Chizhou Wang Xianglin Hou Jie Zhao Shiyu Jia Jiancheng Zhao Xiaojing Cui Haibo Jin Tiansheng Deng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期919-926,共8页
Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditi... Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF. 展开更多
关键词 Melamine formaldehyde foam Degradation alkaline hydrolysis RECYCLING
下载PDF
Surface Deposition of Ni(OH)_(2) and Lattice Distortion Induce the Electrochromic Performance Decay of NiO Films in Alkaline Electrolyte
7
作者 Kejun Xu Liuying Wang +5 位作者 Chaoqun Ge Long Wang Bin Wang Zhuo Wang Chuanwei Zhang Gu Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期257-267,共11页
NiO,an anodic electrochromic material,has applications in energy-saving windows,intelligent displays,and military camouflage.However,its electrochromic mechanism and reasons for its performance degradation in alkaline... NiO,an anodic electrochromic material,has applications in energy-saving windows,intelligent displays,and military camouflage.However,its electrochromic mechanism and reasons for its performance degradation in alkaline aqueous electrolytes are complex and poorly understood,making it challenging to improve NiO thin films.We studied the phases and electrochemical characteristics of NiO films in different states(initial,colored,bleached and after 8000 cycles)and identified three main reasons for performance degradation.First,Ni(OH)_(2)is generated during electrochromic cycling and deposited on the NiO film surface,gradually yielding a NiO@Ni(OH)_(2)core-shell structure,isolating the internal NiO film from the electrolyte,and preventing ion transfer.Second,the core-shell structure causes the mode of electrical conduction to change from first-to second-order conduction,reducing the efficiency of ion transfer to the surface Ni(OH)_(2)layer.Third,Ni(OH)_(2)and NiOOH,which have similar crystal structures but different b-axis lattice parameters,are formed during electrochromic cycling,and large volume changes in the unit cell reduce the structural stability of the thin film.Finally,we clarified the mechanism of electrochromic performance degradation of NiO films in alkaline aqueous electrolytes and provide a route to activation of NiO films,which will promote the development of electrochromic technology. 展开更多
关键词 alkaline electrolyte ELECTROCHROMISM NiO film performance attenuation mechanism
下载PDF
Experimental study on reactions between alkaline basaltic melt and orthopyroxenes: constraints on the evolution of lithospheric mantle in the North China Craton
8
作者 Hanqi He Mingliang Wang Hongfeng Tang 《Acta Geochimica》 EI CAS CSCD 2024年第2期354-365,共12页
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar... The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene. 展开更多
关键词 alkaline basaltic melt ORTHOPYROXENE Melt–mineral reaction High-temperature and high-pressure experiment Genesis of basalt Evolution of lithospheric mantle in the North China Craton
下载PDF
Structure transformation induced bi-component Co–Mo/A-Co(OH)_(2)as highly efficient hydrogen evolution catalyst in alkaline media
9
作者 Yingqing Ou Lu Liu +4 位作者 Xiao Peng Lili Zhang Zhongwen Ou Wendong Zhang Yunhuai Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第5期565-575,共11页
Elucidating the inherent origins of the sluggish hydrogen evolution reaction(HER)kinetics in alkaline media and developing high-performance electrocatalysts are fundamental for the advances of conventional alkaline wa... Elucidating the inherent origins of the sluggish hydrogen evolution reaction(HER)kinetics in alkaline media and developing high-performance electrocatalysts are fundamental for the advances of conventional alkaline water electrolyzers and emerging anion exchange membrane(AEM)electrolyzers.Here we present a facile electrochemical modification strategy for the synthesis of bi-component Co–Mo_((18%))/A-Co(OH)_(2)catalyst toward efficient HER catalysis in alkaline media.Porous Co–Mo alloys with adjustable Mo/Co atomic ratio are first prepared by H2-assisted cathodic electrodeposition.By virtue of the appropriate electronic structure and hydrogen binding energy,Co–Mo_((18%))is the most HER active among the alloys and is further activated by a constant-current electrochemical modification process.Physical characterizations reveal the formation of amorphous Co(OH)_(2)nanoparticles on the surface.Electrokinetic analysis combined with theoretical calculations reveal that the in-situ formed Co(OH)_(2)can efficiently promote the water dissociation,resulting in accelerated Volmer-step kinetics.As a result,the Co–Mo_((18%))/A-Co(OH)_(2)simultaneously achieves the optimization of the two factors dominating alkaline HER activity,i.e.,water dissociation and hydrogen adsorption/desorption via the bifunctional synergy of the bi-components.The high HER activity(η10 of 47 mV at 10 mA cm^(-2))of Co–Mo_((18%))/A-Co(OH)_(2)is close to benchmark Pt/C catalyst and comparable or superior to the most active non-noble metal catalysts. 展开更多
关键词 Co-Mo_((18%))/A-Co(OH)_(2) Electrochemical modification Water dissociation alkaline HER
下载PDF
Alkaline sphingomyelinase deficiency impairs intestinal mucosal barrier integrity and reduces antioxidant capacity in dextran sulfate sodium-induced colitis
10
作者 Ye Tian Xin Li +7 位作者 Xu Wang Si-Ting Pei Hong-Xin Pan Yu-Qi Cheng Yi-Chen Li Wen-Ting Cao Jin-Dong Ding Petersen Ping Zhang 《World Journal of Gastroenterology》 SCIE CAS 2024年第10期1405-1419,共15页
BACKGROUND Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology.Alkaline sphingomyelinase(alk-SMase)is specifically expressed by intestinal epithelial cells,and has been reported ... BACKGROUND Ulcerative colitis is a chronic inflammatory disease of the colon with an unknown etiology.Alkaline sphingomyelinase(alk-SMase)is specifically expressed by intestinal epithelial cells,and has been reported to play an anti-inflammatory role.However,the underlying mechanism is still unclear.AIM To explore the mechanism of alk-SMase anti-inflammatory effects on intestinal barrier function and oxidative stress in dextran sulfate sodium(DSS)-induced colitis.METHODS Mice were administered 3%DSS drinking water,and disease activity index was determined to evaluate the status of colitis.Intestinal permeability was evaluated by gavage administration of fluorescein isothiocyanate dextran,and bacterial translocation was evaluated by measuring serum lipopolysaccharide.Intestinal epithelial cell ultrastructure was observed by electron microscopy.Western blotting and quantitative real-time reverse transcription-polymerase chain reaction were used to detect the expression of intestinal barrier proteins and mRNA,respectively.Serum oxidant and antioxidant marker levels were analyzed using commercial kits to assess oxidative stress levels.RESULTS Compared to wild-type(WT)mice,inflammation and intestinal permeability in alk-SMase knockout(KO)mice were more severe beginning 4 d after DSS induction.The mRNA and protein levels of intestinal barrier proteins,including zonula occludens-1,occludin,claudin-3,claudin-5,claudin-8,mucin 2,and secretory immunoglobulin A,were significantly reduced on 4 d after DSS treatment.Ultrastructural observations revealed progressive damage to the tight junctions of intestinal epithelial cells.Furthermore,by day 4,mitochondria appeared swollen and degenerated.Additionally,compared to WT mice,serum malondialdehyde levels in KO mice were higher,and the antioxidant capacity was significantly lower.The expression of the transcription factor nuclear factor erythroid 2-related factor 2(Nrf2)in the colonic mucosal tissue of KO mice was significantly decreased after DSS treatment.mRNA levels of Nrf2-regulated downstream antioxidant enzymes were also decreased.Finally,colitis in KO mice could be effectively relieved by the injection of tertiary butylhydroquinone,which is an Nrf2 activator.CONCLUSION Alk-SMase regulates the stability of the intestinal mucosal barrier and enhances antioxidant activity through the Nrf2 signaling pathway. 展开更多
关键词 alkaline sphingomyelinase Intestinal mucosal barrier Antioxidant capacity Dextran sulfate sodium-induced colitis nuclear factor erythroid 2-related factor 2
下载PDF
Optimization of Channel Structure of Alkaline Water Electrolyzer by Using an Expanded Mesh as a Bipolar Plate
11
作者 Hai-Yan Xiong Zhen-Xiao Zhu +3 位作者 Xin Gao Chen-Ming Fan Hui-Bao Luan Bing Li 《电化学(中英文)》 CAS 北大核心 2024年第9期25-38,共14页
Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm... Alkaline water electrolysis(AWE)is the most mature technology for hydrogen production by water electrolysis.Alkaline water electrolyzer consists of multiple electrolysis cells,and a single cell consists of a diaphragm,electrodes,bipolar plates and end plates,etc.The existing industrial bipolar plate channel is concave-convex structure,which is manufactured by complicated and high-cost mold punching.This structure still results in uneven electrolyte flow and low current density in the electrolytic cell,further increasing in energy consumption and cost of AWE.Thereby,in this article,the electrochemical and flow model is firstly constructed,based on the existing industrial concave and convex flow channel structure of bipolar plate,to study the current density,electrolyte flow and bubble distribution in the electrolysis cell.The reliability of the model was verified by comparison with experimental data in literature.Among which,the electrochemical current density affects the bubble yield,on the other hand,the generated bubbles cover the electrode surface,affecting the active specific surface area and ohmic resistance,which in turn affects the electrochemical reaction.The result indicates that the flow velocity near the bottom of the concave ball approaches zero,while the flow velocity on the convex ball surface is significantly higher.Additionally,vortices are observed within the flow channel structure,leading to an uneven distribution of electrolyte.Next,modelling is used to optimize the bipolar plate structure of AWE by simulating the electrochemistry and fluid flow performances of four kinds of structures,namely,concave and convex,rhombus,wedge and expanded mesh,in the bipolar plate of alkaline water electrolyzer.The results show that the expanded mesh channel structure has the largest current density of 3330 A/m^(2)and electrolyte flow velocity of 0.507 m/s in the electrolytic cell.Under the same current density,the electrolytic cell with the expanded mesh runner structure has the smallest potential and energy consumption.This work provides a useful guide for the comprehensive understanding and optimization of channel structures,and a theoretical basis for the design of large-scale electrolyzer. 展开更多
关键词 alkaline water electrolyzer Expanded mesh channel structure Numerical simulation
下载PDF
Analysis of alkaline phosphatase and γ-glutamyltransferase after radiofrequency ablation of primary liver cancer: A retrospective study
12
作者 Wen-Yu Huang Sheng Zheng +7 位作者 Dan Zhu Ying-Lang Zeng Juan Yang Xue-Li Zeng Pei Liu Shun-Ling Zhang Ming Yuan Zhi-Xia Wang 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第9期2860-2869,共10页
BACKGROUND Changes in alkaline phosphatase(ALP)andγ-glutamyltransferase(GGT)levels in patients with primary liver cancer(PLC)after radiofrequency ablation(RFA).Hepatocellular carcinoma is a malignant tumor with high ... BACKGROUND Changes in alkaline phosphatase(ALP)andγ-glutamyltransferase(GGT)levels in patients with primary liver cancer(PLC)after radiofrequency ablation(RFA).Hepatocellular carcinoma is a malignant tumor with high incidence worldwide.As a common local treatment,RFA has attracted much attention for its efficacy and influence on liver function.AIM To investigate the effect of serum ALP and GGT levels on the prognosis of patients with PLC treated by RFA.METHODS The preoperative clinical data of 165 patients who were pathologically or clinically diagnosed with PLC and who received RFA in our hospital between October 2018 and June 2023 were collected.The chi-square test was used to compare the data between groups.The Kaplan-Meier method and Cox regression were used to analyze the associ-ations between serum ALP and GGT levels and overall survival,progression-free survival(PFS)and clinical characteristics of patients before treatment.RESULTS The 1-year survival rates of patients with normal(≤135 U/L)and abnormal(>135 U/L)serum ALP before treatment were 91%and 79%,respectively;the 2-year survival rates were 90%and 68%,respectively;and the 5-year survival rates were 35%and 18%,respectively.The difference between the two groups was statistically significant(P=0.01).Before treatment,the 1-year survival rates of patients with normal serum GGT levels(≤45 U/L)and abnormal serum GGT levels(>45 U/L)were 95%and 87%,the 2-year survival rates were 85%and 71%,and the 5-year survival rates were 37%and 21%,respectively.The difference between the two groups was statist-ically significant(P<0.001).Serum ALP[hazard ratio(HR)=1.766,95%confidence interval(95%CI):1.068-2.921,P=0.027]and GGT(HR=2.312,95%CI:1.367-3.912,P=0.002)is closely related to the overall survival of PLC patients after RF ablation and is an independent prognostic factor.The 1-year PFS rates were 72%and 50%,the 2-year PFS rates were 52%and 21%,and the 5-year PFS rates were 14%and 3%,respectively.The difference between the two groups was statistically significant(P<0001).The 1-year PFS rates were 81%and 56%in patients with normal and abnormal serum GGT levels before treatment,respectively;the 2-year PFS rates were 62%and 35%,respectively;and the 5-year PFS rates were 18%and 7%,respectively,with statistical significance between the two groups(P<0.001).The serum ALP concentration(HR=1.653,95%CI:1.001-2.729,P=0.049)and GGT(HR=1.949,95%CI:1.296-2.930,P=0.001)was closely associated with PFS after RFA in patients with PLC.The proportion of male patients with abnormal ALP levels is high,the Child-Pugh grade of liver function is poor,and the incidence of ascites is high.Among GGT-abnormal patients,the Child-Pugh grade of liver function was poor,the tumor stage was late,the proportion of patients with tumors≥5 cm was high,and the incidence of hepatic encephalopathy was high.CONCLUSION Serum ALP and GGT levels before treatment can be used to predict the prognosis of patients with PLC after RFA,and they have certain guiding significance for the long-term survival of patients with PLC after radiofrequency therapy. 展开更多
关键词 alkaline phosphatase γ-glutamyltransferase Radiofrequency ablation Primary liver cancer Retrospective study
下载PDF
An Experimental Study on Alkaline/Surfactant/Polymer Flooding Systems Using Natural Mixed Carboxylate 被引量:2
13
作者 牟建海 李干佐 李英 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2001年第2期162-166,共5页
Orthogonal-test-design method has been used to determine the optimal formula by phase behavior and interfacial tension studies, respectively. The effect of each component of two alkaline/surfactant/polymer flooding sy... Orthogonal-test-design method has been used to determine the optimal formula by phase behavior and interfacial tension studies, respectively. The effect of each component of two alkaline/surfactant/polymer flooding systems on interfacial tension is discussed, in which a low-price natural mixed carboxylate (SDC) is used as the major surfactant. The results indicate that the optimal composition is SDC (0.5%), alkaline NaHCO3/Na2CO3 with mass ratio of 1 (1.0%), and hydrolyzed polyacrylamide(0.1%). In the coreflood experiment, their oil recovery is increased by about 25.2% and 26.8% original oil in place, respectively. 展开更多
关键词 alkaline/surfactant/polymer flooding system natural mixed carboxylate interfacial tension phase behavior orthogonal-test-design
下载PDF
INTERACTION OF COMPONENTS IN PETROLEUM CARBOXYLATE/ALKALINE/HYDROLYZED POLYACRYLAMIDE FLOODING SYSTEM 被引量:1
14
作者 HONG DU HUANG LIN ZHAO Jianghan Petroleum Institute,Jiangling,Hubei,434102 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第3期279-280,共2页
The IFTs(Interfacial tension)of petroleum carboxylate/alkaline/HPAM(Hydrolyzed polyacrylamide)flooding system with Daing crude oil and the effects of petroleum carboxylate and alkaline on viscoaity of HPAM solution we... The IFTs(Interfacial tension)of petroleum carboxylate/alkaline/HPAM(Hydrolyzed polyacrylamide)flooding system with Daing crude oil and the effects of petroleum carboxylate and alkaline on viscoaity of HPAM solution were studied.There exists remarkable synergism between HPAM and petroleum carboxylate,and the introduction of HPAM into petroleum carboxylate/alka- line system leads the lowering of IFTs against Daqing crude oil,The introduction of petroleum carboxylate into solution of HPAM also leads the decreasing of viscosity,but the extent of viscosity decreasing is much lower than that caused by inorganic salts such as NaCl and CaCl_2. 展开更多
关键词 HPAM this INTERACTION OF COMPONENTS IN PETROLEUM CARBOXYLATE/alkaline/HYDROLYZED POLYACRYLAMIDE FLOODING system IFT than EOR
下载PDF
Epitaxially Grown Ru Clusters-Nickel Nitride Heterostructure Advances Water Electrolysis Kinetics in Alkaline and Seawater Media 被引量:4
15
作者 Jiawei Zhu Ruihu Lu +7 位作者 Wenjie Shi Lei Gong Ding Chen Pengyan Wang Lei Chen Jinsong Wu Shichun Mu Yan Zhao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期81-89,共9页
The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated electronic states and tuned adsorption behaviors are conduci... The epitaxial heterostructure can be rationally designed based on the in situ growth of two compatible phases with lattice similarity,in which the modulated electronic states and tuned adsorption behaviors are conducive to the enhancement of electrocatalytic activity.Herein,theoretical simulations first disclose the charge transfer trend and reinforced inherent electron conduction around the epitaxial heterointerface between Ru clusters and Ni_(3)N substrate(cRu-Ni_(3)N),thus leading to the optimized adsorption behaviors and reduced activation energy barriers.Subsequently,the defectrich nanosheets with the epitaxially grown cRu-Ni_(3)N heterointerface are successfully constructed.Impressively,by virtue of the superiority of intrinsic activity and reaction kinetics,such unique epitaxial heterostructure exhibits remarkable bifunctional catalytic activity toward electrocatalytic OER(226 mV@20 mA cm^(−2))and HER(32 mV@10 mA cm^(−2))in alkaline media.Furthermore,it also shows great application prospect in alkaline freshwater and seawater splitting,as well as solar-to-hydrogen integrated system.This work could provide beneficial enlightenment for the establishment of advanced electrocatalysts with epitaxial heterointerfaces. 展开更多
关键词 alkaline water electrolysis bifunctional electrocatalyst epitaxial heterostructure seawater electrolysis solar-to-hydrogen integrated system
下载PDF
Imidazolium group prompted alkaline anion-exchange membrane with high performance for efficient electrochemical CO_(2) conversion 被引量:2
16
作者 Min Wang Qianqian Zou +5 位作者 Xueqi Dong Nengneng Xu Rong Shao Jianfei Ding Yidong Zhang Jinli Qiao 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期893-903,共11页
Development of high-performance hydroxide-conductive membranes is a focus research subject owing to promising applications in electrochemical reduction of CO_(2)(eCO_(2)RR).However,few satisfactory membranes have been... Development of high-performance hydroxide-conductive membranes is a focus research subject owing to promising applications in electrochemical reduction of CO_(2)(eCO_(2)RR).However,few satisfactory membranes have been developed to maximize the performance of CO_(2) electrolyzers,despite its role as the core in regulating ion transport and preventing product crossover or fuel loss.Herein,we report the synthesis of alkaline anion-exchange membranes fabricated by poly(vinyl-alcohol)(PVA)and poly[(3-methyl-1-vinylimidazoliummethylsulfate)-co-(1-vinylpyrrolidone)](PQ44)for use in CO_(2) electrolysis.Owing to the unique imidazolium ring structure coupled with a three-dimensional semiinterpenetrating porous internal architecture,the PVA/PQ44-OH-membranes provide a high hydroxide conductivity(21.47 mS cm^(-1)),preferable mechanical property and thermal stability.In particular,the eCO_(2)RR used PVA/PQ44-OH^(-) as electrolyte membrane realized a charming Faradaic efficiency(88%)and partial current density(29 mA cm^(-2))at0.96 VRHE and,delivered the excellent durability over 20 h electrolysis in 0.5 mol L^(-1) KHCO_(3) electrolyte.Notably,it can even enable an ultrahigh current density beyond 100 mA cm^(-2) at^(-1).11 VRHE when the electrolyte was KOH instead,and produced the FEHCOOof 85%at a low potential of0.81 VRHE,superior to both commercial alkaline A201 and acidic Nafion117 membrane. 展开更多
关键词 alkaline anion-exchange membrane Imidazolium ring structure Semi-interpenetrating network CO_(2)electroreduction Formate production
下载PDF
Effects of deep alkaline and acidic fluids on reservoir developed in fault belt of saline lacustrine basin 被引量:1
17
作者 Lei-Lei Yang Xin-Wei Li +4 位作者 Guo Wei Yi-Dan Liu Qin-Gong Zhuo Zhi-Chao Yu Zhi-Ye Gao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期776-786,共11页
Through the long development processes of reservoir sedimentation and diagenesis, acidic and alkaline fluids play key roles in controlling deep reservoir development. However, the ways in which deep fluids control and... Through the long development processes of reservoir sedimentation and diagenesis, acidic and alkaline fluids play key roles in controlling deep reservoir development. However, the ways in which deep fluids control and transform the reservoir under complex fault conditions remain unclear. In this study, a 2D model was established based on a typical sub-salt to intra-salt vertical profile in the Qaidam Basin, China. Based on measured data, multiphase flow reaction and solute transport simulation technology were used to analyze fluids flow and migration in the intra-salt and sub-salt reservoirs, determine the mineral dissolution, precipitation, and transformation in the reservoir caused by the deep fluids, and calculate the changes in reservoir porosity. Results show that deep fluid migrates preferentially along dominant channels and triggers a series of fluid–rock chemical reactions. In the first stage, a large amount of anhydrite precipitated in the fault as a result of upward migration of deep saline fluid, resulting in the formation of anhydrite veins and blockage at the base of the fault. In the second stage, organic acids caused minerals dissolution and a vertical channel was opened in previously blocked area, which promoted continuous upward migration of organic acids and the formation of secondary pores. This study clarifies the transformative effects of deep alkaline and acidic fluids on the reservoir. Moreover, the important fluid transport role of faults and their effect on reservoir development were determined. 展开更多
关键词 Saline lacustrine basin alkaline and acidic fluids Fault-belt reservoir Mineral transformation Physical conditions
下载PDF
A New Voltammetric Enzyme Immunoassay System for the Detection of Alkaline Phosphatase
18
作者 Kui JIAO Wei SUN Hai Yu WANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第1期69-70,共2页
A new voltammetric enzyme immunoassay system was investigated based on p-nitrophenyl phosphate (PNPP) as the substrate for alkaline phosphatase (ALP). PNPP is enzymatically hydrolyzed and the product p-nitrophenol (P... A new voltammetric enzyme immunoassay system was investigated based on p-nitrophenyl phosphate (PNPP) as the substrate for alkaline phosphatase (ALP). PNPP is enzymatically hydrolyzed and the product p-nitrophenol (PNP) is detected by differential pulse voltammetry (DPV), which can be oxidized at +1.02 V (vs. Ag/AgCl) on bare glass carbon electrode (GCE). The conditions for enzymatic reaction and electrochemical detection were studied. According to this method, ALP can be detected with a detection limit of 2.8102 mU/L and a linear range of 4.0102 ~ 1.0106 mU/L. 展开更多
关键词 alkaline phosphatase p-nitrophenyl phosphate P-NITROPHENOL differential pulse voltammetry voltammetric enzyme immunoassay.
下载PDF
Discussion on design for alkaline cleaning system of continual annealing line
19
作者 HE Daohong,YI Fan and LU Zhiyi Baosteel Engineering & Technology Group Co.,Ltd.,Shanghai 201900 《Baosteel Technical Research》 CAS 2010年第S1期117-,共1页
Conventional process flow and main work mechanism of alkaline cleaning process of Continual Annealing Line are generally reviewed in the paper,and the work flow of design is analysed including the lye,rinse water circ... Conventional process flow and main work mechanism of alkaline cleaning process of Continual Annealing Line are generally reviewed in the paper,and the work flow of design is analysed including the lye,rinse water circuit,conductivity detection circuit,utility media supply circuit and other main working circuits.Meanwhile,the heat demand of the alkaline cleaning system,rinse water system and dryer device are also analysed.Lumped parameter method in the heat-transfer theory is adopted to calculate the heating time of unsteady heat transfer for strips in the on-line tank.And the reasons why brush roller is of inverse brush and rinsing nozzles are equipped at the inlet side are found.Types and working principles of iron removal and degreasing devices for alkaline cleaning system,which adopt new magnetic filtration and ultra filtration processes,are described.Besides,the bypass filtering method is used to calculate the processing capacity of magnetic filtration and ultra filtration devices.Finally,the related features of 3-Dimension software "PlantSpace" for designing a CAL in Baosteel are totally introduced,such as specification for piping,co-designing,pipe code and 3-Dimension design process. 展开更多
关键词 alkaline cleaning heating time magnetic filtration ultra filtration 3-Dimension design
下载PDF
A Phos-Tag-Based Fluorescence Quenching System for Activity Assay and Inhibitor Screening for Alkaline Phosphatase
20
作者 Emiko Kinoshita-Kikuta Hiromasa Kurosaki +2 位作者 Natsumi Kunisada Eiji Kinoshita Tohru Koike 《American Journal of Analytical Chemistry》 2014年第12期796-804,共9页
Fluorescence resonance energy transfer (FRET) is a distance-dependent interaction between the electronic excited states of two dye molecules. Here we introduce a novel FRET-based fluorescence quenching system for assa... Fluorescence resonance energy transfer (FRET) is a distance-dependent interaction between the electronic excited states of two dye molecules. Here we introduce a novel FRET-based fluorescence quenching system for assaying the activity of alkaline phosphatase (AP) by using a phos-phate-binding tag molecule, Phos-tag {1,3-bis[bis(pyridine-2-ylmethyl)amino]propan-2-olato dizinc(II) complex}, attached to a nonfluorescent 4-{[4-(dimethylamino)phenyl]diazenyl}benzoyl (Dabcyl: λmax 475 nm) dye group. The fluorogenic biomolecule riboflavin 5’-phosphate (FMN: λem 525 nm) was used as an AP substrate. The Dabcyl-labeled Phos-tag specifically captured FMN to form a stable 1:1 complex, resulting in efficient fluorescence quenching. The quenching efficiency was more than 95% for a mixture of 12 μM FMN and 13.5 μM Dabcyl-labeled Phos-tag in aqueous solution at pH 7.4 and 25°C. When FMN was dephosphorylated with AP, riboflavin was released into the solution and fluorescence from the flavin moiety appeared. By using this quenching system, we succeeded in detecting time- and dose-dependent dephosphorylation of FMN by AP under near-physiological conditions. 展开更多
关键词 Fluorescence RESONANCE Energy Transfer ENZYME Assays ENZYME INHIBITORS PHOS-TAG alkaline PHOSPHATASE
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部