Three titanium-containing aluminum phosphate catalysts with a general formula Al 0.77 Ti 0.23 PO 4 were prepared by the sol-gel method at room temperature(APTS), and a nonuniform precipitation procedure at ro...Three titanium-containing aluminum phosphate catalysts with a general formula Al 0.77 Ti 0.23 PO 4 were prepared by the sol-gel method at room temperature(APTS), and a nonuniform precipitation procedure at room temperature(APTR) and under reflux(APTF), respectively. The structural features and the surface properties of the three catalysts were determined by means of the physical adsorption of nitrogen at liquid N 2 temperature, XRD, UV-Vis, NH 3-TPD and IR of adsorbed pyridine. The vapor phase O-alkylation of catechol with ethanol over the prepared catalysts was studied. It was found that the activity and the selectivity of these catalysts are greatly dependent on the preparation method, and catalyst APTF shows the highest activity and selectivity. The characterization evidence indicates that the weak Brnsted acid sites were more effective for the reaction.展开更多
Friedel–Crafts alkylation of benzene with linear chain ole fin(C_(10)–C_(14)),which is an important reaction of synthetic detergent,was studied via different catalysts of aluminum impregnated silica molecular sieves...Friedel–Crafts alkylation of benzene with linear chain ole fin(C_(10)–C_(14)),which is an important reaction of synthetic detergent,was studied via different catalysts of aluminum impregnated silica molecular sieves.AlCl_3 was immobilized on silica molecular sieves with different channel structures,hexagonal packing channels network(SBA-15,MCM-41),and disordered channel network(SiO_2,SiO_2-Gel) by impregnation.XRD and N_2 adsorption–desorption isotherms con firmed that the speci fic mesoporous structures were maintained for order channel network catalyst after impregnation.Catalytic activities were investigated under different conditions.The in fluences of channel structure were discussed.The results showed that catalyst based on mesoporous like SBA-15 had the highest catalytic activities and 2-LAB selectivity compared with other catalysts in this work.The highest 2-LAB selectivity was nearly 50% when 1-dodecene conversion was nearly 100%.At low 1-dodecene conversion or higher benzene/1-dodecene molar ratio,2-LAB selectivity was nearly 60%.展开更多
A highly selective synthesis of 2,6-dimethylnaphthanlene(2,6-DMN) by transalkylation between 2-methylnaphthanlene(2-MN) and 1,2,4,5-tetramethylbenzene(TeMB) was performed with 1-alkyl-3-methylimidazo- lium alumi...A highly selective synthesis of 2,6-dimethylnaphthanlene(2,6-DMN) by transalkylation between 2-methylnaphthanlene(2-MN) and 1,2,4,5-tetramethylbenzene(TeMB) was performed with 1-alkyl-3-methylimidazo- lium aluminum chloride([Cnmim]Cl-AlCl3) ionic liquids(ILs) as catalysts. The influences of the alkyl group as the organic cation, the acidic strength of [C4mim]Cl-AlCl3 ILs as well as the reaction conditions on the catalytic performance were investigated. [C4mim]Cl-AlCl3 ILs[x(AlCl3)=71%] exhibited high activity and selectivity toward 2,6-DMN. The selectivity to 2,6-DMN and the 2,6-DMN/2,7-DMN ratio reached up to 68.2% and 3.7:1, respectively. The UV-Vis spectrum of TeMB treated by different ILs shows that the protonated degree of TeMB dependeds on the acidity strength of ILs, which has a significant impact on the reaction results. The high protonated degree of TeMB is advantageous to enhancing the conversion of transalkylation and the large stereo-hindrance effect of TeMB is favorable to improving the selecivity to 2,6-DMN.展开更多
采用晶种导向的方法,在不同晶化温度(80~170℃)下水热合成了b轴厚度为50 nm的ZSM-5分子筛;采用XRD、SEM、NH_(3)-TPD、Py-IR、XPS、ICP-AES、^(27)Al MAS NMR和UV-vis-DRS等手段对ZSM-5分子筛进行表征,研究了晶化温度对ZSM-5分子筛晶体...采用晶种导向的方法,在不同晶化温度(80~170℃)下水热合成了b轴厚度为50 nm的ZSM-5分子筛;采用XRD、SEM、NH_(3)-TPD、Py-IR、XPS、ICP-AES、^(27)Al MAS NMR和UV-vis-DRS等手段对ZSM-5分子筛进行表征,研究了晶化温度对ZSM-5分子筛晶体生长和铝分布的影响,并考察了不同晶化温度制备的ZSM-5分子筛催化剂在苯-稀乙烯烷基化反应中的催化性能。结果表明:晶化温度改变了ZSM-5分子筛的铝分布,从而影响分子筛的酸性质和烷基化反应性能;低晶化温度80℃下制备的ZSM-5分子筛具有酸性弱,总酸量少、Lewis酸以及外表面酸中心少,骨架铝(Al_(F))主要分布在直孔道和交叉孔道处;在反应温度360℃、压力1.4 MPa、苯/稀乙烯摩尔比1、稀乙烯质量空速1.5 h^(-1)、反应时间35 h的条件下,H-ZSM-5-80分子筛催化苯-稀乙烯烷基化反应,乙基选择性最高为95.4%,副产物二甲苯选择性最低为0.09%。展开更多
基金Supported by the Foundation of Science of Jilin Province Science and Technique Com mittee( No.990 5 4 6 )
文摘Three titanium-containing aluminum phosphate catalysts with a general formula Al 0.77 Ti 0.23 PO 4 were prepared by the sol-gel method at room temperature(APTS), and a nonuniform precipitation procedure at room temperature(APTR) and under reflux(APTF), respectively. The structural features and the surface properties of the three catalysts were determined by means of the physical adsorption of nitrogen at liquid N 2 temperature, XRD, UV-Vis, NH 3-TPD and IR of adsorbed pyridine. The vapor phase O-alkylation of catechol with ethanol over the prepared catalysts was studied. It was found that the activity and the selectivity of these catalysts are greatly dependent on the preparation method, and catalyst APTF shows the highest activity and selectivity. The characterization evidence indicates that the weak Brnsted acid sites were more effective for the reaction.
基金Supported by the National Natural Science Foundation of China(U1362102)
文摘Friedel–Crafts alkylation of benzene with linear chain ole fin(C_(10)–C_(14)),which is an important reaction of synthetic detergent,was studied via different catalysts of aluminum impregnated silica molecular sieves.AlCl_3 was immobilized on silica molecular sieves with different channel structures,hexagonal packing channels network(SBA-15,MCM-41),and disordered channel network(SiO_2,SiO_2-Gel) by impregnation.XRD and N_2 adsorption–desorption isotherms con firmed that the speci fic mesoporous structures were maintained for order channel network catalyst after impregnation.Catalytic activities were investigated under different conditions.The in fluences of channel structure were discussed.The results showed that catalyst based on mesoporous like SBA-15 had the highest catalytic activities and 2-LAB selectivity compared with other catalysts in this work.The highest 2-LAB selectivity was nearly 50% when 1-dodecene conversion was nearly 100%.At low 1-dodecene conversion or higher benzene/1-dodecene molar ratio,2-LAB selectivity was nearly 60%.
基金Supported by the National Natural Science Foundation of China(No.21076065)the Natural Science Foundation of Heilongjiang Province of China(No.ZD200820-02)the Science&Technology Research Foundation of Education Bureau of Heilongjiang Province,China(No.11531266)
文摘A highly selective synthesis of 2,6-dimethylnaphthanlene(2,6-DMN) by transalkylation between 2-methylnaphthanlene(2-MN) and 1,2,4,5-tetramethylbenzene(TeMB) was performed with 1-alkyl-3-methylimidazo- lium aluminum chloride([Cnmim]Cl-AlCl3) ionic liquids(ILs) as catalysts. The influences of the alkyl group as the organic cation, the acidic strength of [C4mim]Cl-AlCl3 ILs as well as the reaction conditions on the catalytic performance were investigated. [C4mim]Cl-AlCl3 ILs[x(AlCl3)=71%] exhibited high activity and selectivity toward 2,6-DMN. The selectivity to 2,6-DMN and the 2,6-DMN/2,7-DMN ratio reached up to 68.2% and 3.7:1, respectively. The UV-Vis spectrum of TeMB treated by different ILs shows that the protonated degree of TeMB dependeds on the acidity strength of ILs, which has a significant impact on the reaction results. The high protonated degree of TeMB is advantageous to enhancing the conversion of transalkylation and the large stereo-hindrance effect of TeMB is favorable to improving the selecivity to 2,6-DMN.