Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human...Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.展开更多
Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully superv...Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.展开更多
As educational reforms intensify and societal emphasis shifts towards empowerment,the traditional discourse paradigm of management and control in educational supervision faces growing challenges.This paper explores th...As educational reforms intensify and societal emphasis shifts towards empowerment,the traditional discourse paradigm of management and control in educational supervision faces growing challenges.This paper explores the transformation of this discourse paradigm through the lens of empowerment,analyzing its distinct characteristics,potential pathways,and effective strategies.This paper begins by reviewing the concept of empowerment and examining the current research landscape surrounding the discourse paradigm in educational supervision.Subsequently,we conduct a comparative analysis of the“control”and“empowerment”paradigms,highlighting their essential differences.This analysis illuminates the key characteristics of an empowerment-oriented approach to educational supervision,particularly its emphasis on dialogue,collaboration,participation,and,crucially,empowerment itself.Ultimately,this research advocates for a shift in educational supervision towards an empowerment-oriented discourse system.This entails a multi-pronged approach:transforming ingrained beliefs,embracing renewed pedagogical concepts,fostering methodological innovation,and optimizing existing mechanisms and strategies within educational supervision.These changes are proposed to facilitate the more effective alignment of educational supervision with the pursuit of high-quality education.展开更多
The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose...The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose of the independent supervision function is to ensure that the system operates within the scope of procedures and manuals.At present,the function of independent supervision is a difficult and confusing issue for various original equipment manufacturers as well as suppliers,and there is an urgent requirement to put forward relevant requirements and form relevant methods.Based on the above mentioned objective,the basic requirements of the independent supervision function of design assurance system were studied,the problems and deficiencies in the organization,staffing,and methods existing in the current independent supervision function were analyzed,the improvement suggestions and measures for the performance of the independent supervision function from the aspects of the organization,staffing,procedures,and suppliers were put forward.The present work and conclusions provide guidance and direction for the effective operation of the design assurance system.展开更多
Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geoph...Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geophysical inversion problem is essentially an ill-posedness problem,which means that there are many solutions corresponding to the same seismic data.Therefore,regularization schemes,which can provide stable and unique inversion results to some extent,have been introduced into the objective function as constrain terms.Among them,given a low-frequency initial impedance model is the most commonly used regularization method,which can provide a smooth and stable solution.However,this model-based inversion method relies heavily on the initial model and the inversion result is band limited to the effective frequency bandwidth of seismic data,which cannot effectively improve the seismic vertical resolution and is difficult to be applied to complex structural regions.Therefore,we propose a data-driven approach for high-resolution impedance inversion based on the bidirectional long short-term memory recurrent neural network,which regards seismic data as time-series rather than image-like patches.Compared with the model-based inversion method,the data-driven approach provides higher resolution inversion results,which demonstrates the effectiveness of the data-driven method for recovering the high-frequency components.However,judging from the inversion results for characterization the spatial distribution of thin-layer sands,the accuracy of high-frequency components is difficult to guarantee.Therefore,we add the model constraint to the objective function to overcome the shortages of relying only on the data-driven schemes.First,constructing the supervisor1 based on the bidirectional long short-term memory recurrent neural network,which provides the predicted impedance with higher resolution.Then,convolution constraint as supervisor2 is introduced into the objective function to guarantee the reliability and accuracy of the inversion results,which makes the synthetic seismic data obtained from the inversion result consistent with the input data.Finally,we test the proposed scheme based on the synthetic and field seismic data.Compared to model-based and purely data-driven impedance inversion methods,the proposed approach provides more accurate and reliable inversion results while with higher vertical resolution and better spatial continuity.The inversion results accurately characterize the spatial distribution relationship of thin sands.The model tests demonstrate that the model-constrained and data-driven impedance inversion scheme can effectively improve the thin-layer structure characterization based on the seismic data.Moreover,tests on the oil field data indicate the practicality and adaptability of the proposed method.展开更多
Background In computer vision,simultaneously estimating human pose,shape,and clothing is a practical issue in real life,but remains a challenging task owing to the variety of clothing,complexity of de-formation,shorta...Background In computer vision,simultaneously estimating human pose,shape,and clothing is a practical issue in real life,but remains a challenging task owing to the variety of clothing,complexity of de-formation,shortage of large-scale datasets,and difficulty in estimating clothing style.Methods We propose a multistage weakly supervised method that makes full use of data with less labeled information for learning to estimate human body shape,pose,and clothing deformation.In the first stage,the SMPL human-body model parameters were regressed using the multi-view 2D key points of the human body.Using multi-view information as weakly supervised information can avoid the deep ambiguity problem of a single view,obtain a more accurate human posture,and access supervisory information easily.In the second stage,clothing is represented by a PCA-based model that uses two-dimensional key points of clothing as supervised information to regress the parameters.In the third stage,we predefine an embedding graph for each type of clothing to describe the deformation.Then,the mask information of the clothing is used to further adjust the deformation of the clothing.To facilitate training,we constructed a multi-view synthetic dataset that included BCNet and SURREAL.Results The Experiments show that the accuracy of our method reaches the same level as that of SOTA methods using strong supervision information while only using weakly supervised information.Because this study uses only weakly supervised information,which is much easier to obtain,it has the advantage of utilizing existing data as training data.Experiments on the DeepFashion2 dataset show that our method can make full use of the existing weak supervision information for fine-tuning on a dataset with little supervision information,compared with the strong supervision information that cannot be trained or adjusted owing to the lack of exact annotation information.Conclusions Our weak supervision method can accurately estimate human body size,pose,and several common types of clothing and overcome the issues of the current shortage of clothing data.展开更多
Objective To provide reference for the news media to give play to the role of public opinion supervision in time based on the background of drug safety and social co-governance.Methods The method of case analysis was ...Objective To provide reference for the news media to give play to the role of public opinion supervision in time based on the background of drug safety and social co-governance.Methods The method of case analysis was used to make a retrospective study on the Changsheng vaccine incident in 2018.Then the role of mainstream media,pharmaceutical media,and self-media in the supervision of public opinion was investigated.Results and Conclusion Both mainstream and pharmaceutical media played an excellent role in supervising the Changchun Changsheng vaccine incident.However,the content published by some pharmaceutical media was hard to understand by ordinary people.Besides,the role of self-media in public opinion supervision was polarized.Some self-media closely kept pace with mainstream media in public opinion supervision.Other self-media unilaterally pursued the click rate,publishing false information to guide wrong public opinion.The news media should optimize the supervision efficiency of drug safety.On the one hand,pharmaceutical media should pay attention to the fact that readers may not understand the difficult terms because they are not professional.On the other hand,self-media practitioners should improve their professional quality so that they will not publish some fake news to mislead public opinion.展开更多
The federated self-supervised framework is a distributed machine learning method that combines federated learning and self-supervised learning, which can effectively solve the problem of traditional federated learning...The federated self-supervised framework is a distributed machine learning method that combines federated learning and self-supervised learning, which can effectively solve the problem of traditional federated learning being difficult to process large-scale unlabeled data. The existing federated self-supervision framework has problems with low communication efficiency and high communication delay between clients and central servers. Therefore, we added edge servers to the federated self-supervision framework to reduce the pressure on the central server caused by frequent communication between both ends. A communication compression scheme using gradient quantization and sparsification was proposed to optimize the communication of the entire framework, and the algorithm of the sparse communication compression module was improved. Experiments have proved that the learning rate changes of the improved sparse communication compression module are smoother and more stable. Our communication compression scheme effectively reduced the overall communication overhead.展开更多
The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy ...The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments.展开更多
基金the National Natural Science Foundation of China(42001408,61806097).
文摘Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods.
文摘Recently,weak supervision has received growing attention in the field of salient object detection due to the convenience of labelling.However,there is a large performance gap between weakly supervised and fully supervised salient object detectors because the scribble annotation can only provide very limited foreground/background information.Therefore,an intuitive idea is to infer annotations that cover more complete object and background regions for training.To this end,a label inference strategy is proposed based on the assumption that pixels with similar colours and close positions should have consistent labels.Specifically,k-means clustering algorithm was first performed on both colours and coordinates of original annotations,and then assigned the same labels to points having similar colours with colour cluster centres and near coordinate cluster centres.Next,the same annotations for pixels with similar colours within each kernel neighbourhood was set further.Extensive experiments on six benchmarks demonstrate that our method can significantly improve the performance and achieve the state-of-the-art results.
文摘As educational reforms intensify and societal emphasis shifts towards empowerment,the traditional discourse paradigm of management and control in educational supervision faces growing challenges.This paper explores the transformation of this discourse paradigm through the lens of empowerment,analyzing its distinct characteristics,potential pathways,and effective strategies.This paper begins by reviewing the concept of empowerment and examining the current research landscape surrounding the discourse paradigm in educational supervision.Subsequently,we conduct a comparative analysis of the“control”and“empowerment”paradigms,highlighting their essential differences.This analysis illuminates the key characteristics of an empowerment-oriented approach to educational supervision,particularly its emphasis on dialogue,collaboration,participation,and,crucially,empowerment itself.Ultimately,this research advocates for a shift in educational supervision towards an empowerment-oriented discourse system.This entails a multi-pronged approach:transforming ingrained beliefs,embracing renewed pedagogical concepts,fostering methodological innovation,and optimizing existing mechanisms and strategies within educational supervision.These changes are proposed to facilitate the more effective alignment of educational supervision with the pursuit of high-quality education.
文摘The effective operation of a design assurance system cannot be achieved without the effective performance of the independent supervision function.As one of the core functions of the design assurance system,the purpose of the independent supervision function is to ensure that the system operates within the scope of procedures and manuals.At present,the function of independent supervision is a difficult and confusing issue for various original equipment manufacturers as well as suppliers,and there is an urgent requirement to put forward relevant requirements and form relevant methods.Based on the above mentioned objective,the basic requirements of the independent supervision function of design assurance system were studied,the problems and deficiencies in the organization,staffing,and methods existing in the current independent supervision function were analyzed,the improvement suggestions and measures for the performance of the independent supervision function from the aspects of the organization,staffing,procedures,and suppliers were put forward.The present work and conclusions provide guidance and direction for the effective operation of the design assurance system.
基金funded by R&D Department of China National Petroleum Corporation(2022DQ0604-04)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03)the Science Research and Technology Development of PetroChina(2021DJ1206).
文摘Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geophysical inversion problem is essentially an ill-posedness problem,which means that there are many solutions corresponding to the same seismic data.Therefore,regularization schemes,which can provide stable and unique inversion results to some extent,have been introduced into the objective function as constrain terms.Among them,given a low-frequency initial impedance model is the most commonly used regularization method,which can provide a smooth and stable solution.However,this model-based inversion method relies heavily on the initial model and the inversion result is band limited to the effective frequency bandwidth of seismic data,which cannot effectively improve the seismic vertical resolution and is difficult to be applied to complex structural regions.Therefore,we propose a data-driven approach for high-resolution impedance inversion based on the bidirectional long short-term memory recurrent neural network,which regards seismic data as time-series rather than image-like patches.Compared with the model-based inversion method,the data-driven approach provides higher resolution inversion results,which demonstrates the effectiveness of the data-driven method for recovering the high-frequency components.However,judging from the inversion results for characterization the spatial distribution of thin-layer sands,the accuracy of high-frequency components is difficult to guarantee.Therefore,we add the model constraint to the objective function to overcome the shortages of relying only on the data-driven schemes.First,constructing the supervisor1 based on the bidirectional long short-term memory recurrent neural network,which provides the predicted impedance with higher resolution.Then,convolution constraint as supervisor2 is introduced into the objective function to guarantee the reliability and accuracy of the inversion results,which makes the synthetic seismic data obtained from the inversion result consistent with the input data.Finally,we test the proposed scheme based on the synthetic and field seismic data.Compared to model-based and purely data-driven impedance inversion methods,the proposed approach provides more accurate and reliable inversion results while with higher vertical resolution and better spatial continuity.The inversion results accurately characterize the spatial distribution relationship of thin sands.The model tests demonstrate that the model-constrained and data-driven impedance inversion scheme can effectively improve the thin-layer structure characterization based on the seismic data.Moreover,tests on the oil field data indicate the practicality and adaptability of the proposed method.
基金Supported by the National Key Research and Development Programme of China(2018YFC0831201).
文摘Background In computer vision,simultaneously estimating human pose,shape,and clothing is a practical issue in real life,but remains a challenging task owing to the variety of clothing,complexity of de-formation,shortage of large-scale datasets,and difficulty in estimating clothing style.Methods We propose a multistage weakly supervised method that makes full use of data with less labeled information for learning to estimate human body shape,pose,and clothing deformation.In the first stage,the SMPL human-body model parameters were regressed using the multi-view 2D key points of the human body.Using multi-view information as weakly supervised information can avoid the deep ambiguity problem of a single view,obtain a more accurate human posture,and access supervisory information easily.In the second stage,clothing is represented by a PCA-based model that uses two-dimensional key points of clothing as supervised information to regress the parameters.In the third stage,we predefine an embedding graph for each type of clothing to describe the deformation.Then,the mask information of the clothing is used to further adjust the deformation of the clothing.To facilitate training,we constructed a multi-view synthetic dataset that included BCNet and SURREAL.Results The Experiments show that the accuracy of our method reaches the same level as that of SOTA methods using strong supervision information while only using weakly supervised information.Because this study uses only weakly supervised information,which is much easier to obtain,it has the advantage of utilizing existing data as training data.Experiments on the DeepFashion2 dataset show that our method can make full use of the existing weak supervision information for fine-tuning on a dataset with little supervision information,compared with the strong supervision information that cannot be trained or adjusted owing to the lack of exact annotation information.Conclusions Our weak supervision method can accurately estimate human body size,pose,and several common types of clothing and overcome the issues of the current shortage of clothing data.
文摘Objective To provide reference for the news media to give play to the role of public opinion supervision in time based on the background of drug safety and social co-governance.Methods The method of case analysis was used to make a retrospective study on the Changsheng vaccine incident in 2018.Then the role of mainstream media,pharmaceutical media,and self-media in the supervision of public opinion was investigated.Results and Conclusion Both mainstream and pharmaceutical media played an excellent role in supervising the Changchun Changsheng vaccine incident.However,the content published by some pharmaceutical media was hard to understand by ordinary people.Besides,the role of self-media in public opinion supervision was polarized.Some self-media closely kept pace with mainstream media in public opinion supervision.Other self-media unilaterally pursued the click rate,publishing false information to guide wrong public opinion.The news media should optimize the supervision efficiency of drug safety.On the one hand,pharmaceutical media should pay attention to the fact that readers may not understand the difficult terms because they are not professional.On the other hand,self-media practitioners should improve their professional quality so that they will not publish some fake news to mislead public opinion.
文摘The federated self-supervised framework is a distributed machine learning method that combines federated learning and self-supervised learning, which can effectively solve the problem of traditional federated learning being difficult to process large-scale unlabeled data. The existing federated self-supervision framework has problems with low communication efficiency and high communication delay between clients and central servers. Therefore, we added edge servers to the federated self-supervision framework to reduce the pressure on the central server caused by frequent communication between both ends. A communication compression scheme using gradient quantization and sparsification was proposed to optimize the communication of the entire framework, and the algorithm of the sparse communication compression module was improved. Experiments have proved that the learning rate changes of the improved sparse communication compression module are smoother and more stable. Our communication compression scheme effectively reduced the overall communication overhead.
文摘The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments.