期刊文献+
共找到392篇文章
< 1 2 20 >
每页显示 20 50 100
Multiple-dimensioned defect engineering for graphite felt electrode of vanadium redox flow battery
1
作者 Yingqiao Jiang Yinhui Wang +7 位作者 Gang Cheng Yuehua Li Lei Dai Jing Zhu Wei Meng Jingyu Xi Ling Wang Zhangxing He 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期143-153,共11页
The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledim... The scarcity of wettability,insufficient active sites,and low surface area of graphite felt(GF)have long been suppressing the performance of vanadium redox flow batteries(VRFBs).Herein,an ultra-homogeneous multipledimensioned defect,including nano-scale etching and atomic-scale N,O codoping,was used to modify GF by the molten salt system.NH_(4)Cl and KClO_(3) were added simultaneously to the system to obtain porous N/O co-doped electrode(GF/ON),where KClO_(3) was used to ultra-homogeneously etch,and O-functionalize electrode,and NH4Cl was used as N dopant,respectively.GF/ON presents better electrochemical catalysis for VO_(2)+/VO_(2)+ and V3+/V2+ reactions than only O-functionalized electrodes(GF/O)and GF.The enhanced electrochemical properties are attributed to an increase in active sites,surface area,and wettability,as well as the synergistic effect of N and O,which is also supported by the density functional theory calculations.Further,the cell using GF/ON shows higher discharge capacity,energy efficiency,and stability for cycling performance than the pristine cell at 140 mA cm^(−2) for 200 cycles.Moreover,the energy efficiency of the modified cell is increased by 9.7% from 55.2% for the pristine cell at 260 mA cm^(−2).Such an ultra-homogeneous etching with N and O co-doping through“boiling”molten salt medium provides an effective and practical application potential way to prepare superior electrodes for VRFB. 展开更多
关键词 graphite felt molten salt N O co-doping ultra-homogeneous etching vanadium redox flow battery
下载PDF
Insights into the hydrogen evolution reaction in vanadium redox flow batteries:A synchrotron radiation based X-ray imaging study
2
作者 Kerstin Köble Alexey Ershov +7 位作者 Kangjun Duan Monja Schilling Alexander Rampf Angelica Cecilia TomášFaragó Marcus Zuber Tilo Baumbach Roswitha Zeis 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期132-144,共13页
The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble fo... The parasitic hydrogen evolution reaction(HER)in the negative half-cell of vanadium redox flow batteries(VRFBs)causes severe efficiency losses.Thus,a deeper understanding of this process and the accompanying bubble formation is crucial.This benchmarking study locally analyzes the bubble distribution in thick,porous electrodes for the first time using deep learning-based image segmentation of synchrotron X-ray micro-tomograms.Each large three-dimensional data set was processed precisely in less than one minute while minimizing human errors and pointing out areas of increased HER activity in VRFBs.The study systematically varies the electrode potential and material,concluding that more negative electrode potentials of-200 m V vs.reversible hydrogen electrode(RHE)and lower cause more substantial bubble formation,resulting in bubble fractions of around 15%–20%in carbon felt electrodes.Contrarily,the bubble fractions stay only around 2%in an electrode combining carbon felt and carbon paper.The detected areas with high HER activity,such as the border subregion with more than 30%bubble fraction in carbon felt electrodes,the cutting edges,and preferential spots in the electrode bulk,are potential-independent and suggest that larger electrodes with a higher bulk-to-border ratio might reduce HER-related performance losses.The described combination of electrochemical measurements,local X-ray microtomography,AI-based segmentation,and 3D morphometric analysis is a powerful and novel approach for local bubble analysis in three-dimensional porous electrodes,providing an essential toolkit for a broad community working on bubble-generating electrochemical systems. 展开更多
关键词 vanadium redox flow battery Synchrotron X-ray imaging Tomography Hydrogen evolution reaction Gas bubbles Deep learning
下载PDF
A phosphotungstic acid coupled silica-Nafion composite membrane with significantly enhanced ion selectivity for vanadium redox flow battery 被引量:2
3
作者 Xiao-Bing Yang Lei Zhao +3 位作者 Kokswee Goh Xu-Lei Sui Ling-Hui Meng Zhen-Bo Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第2期177-184,共8页
An ultra-high ion-selective Nafion composite membrane modified by phosphotungstic acid(PWA)coupled silica for vanadium redox flow battery(VRB)was constructed and prepared through solution casting.The composite membran... An ultra-high ion-selective Nafion composite membrane modified by phosphotungstic acid(PWA)coupled silica for vanadium redox flow battery(VRB)was constructed and prepared through solution casting.The composite membrane exhibits excellent proton conductivity and vanadium ions blocking property by incorporating the nanohybrid composed of silica and PWA into the Nafion ionomer.Simple tuning for the filling amount of the nanohybrid endows the obtained membranes preeminent vanadium barrier property including a minimum vanadium permeability of 3.13×10-7cm2min-1and a maximum proton conductivity of 0.081 S cm-1at 25°C.These indicate an ion selectivity of 2.59×105S min cm-3,which is 6.8times higher than that of recast Nafion(0.33×105S min cm-3).As a result,the VRB with the composite membrane shows superior battery performance containing a lower self-discharge rate,higher capacity retention and more robust cyclic stability compared with recast Nafion over a range of current densities from 40 to 100 m A cm-2. 展开更多
关键词 vanadium redox flow battery Modified SILICA Phosphotungstic ACID Low vanadium PERMEABILITY
下载PDF
Towards an all-vanadium redox flow battery with higher theoretical volumetric capacities by utilizing the VO^2+/V^3+ couple 被引量:2
4
作者 Wentao Duan Bin Li +8 位作者 Dongping Lu Xiaoliang Wei Zimin Nie Vijayakumar Murugesan James P. Kizewski Aaron Hollas David Reed Vincent Sprenkle Wei Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1381-1385,共5页
An all-vanadium redox flow battery with V(IV) as the sole parent active species is developed by accessing the VO2+/V3+ redox couple. These batteries, referred to as V4RBs, possess a higher theoretical volumetric c... An all-vanadium redox flow battery with V(IV) as the sole parent active species is developed by accessing the VO2+/V3+ redox couple. These batteries, referred to as V4RBs, possess a higher theoretical volumetric capacity than traditional VRBs. Copper ions were identified as an effective additive to boost the battery performance. 展开更多
关键词 vanadium redoxreactions redox flow battery Energy density Cu
下载PDF
Nanostructured N-doped carbon materials derived from expandable biomass with superior electrocatalytic performance towards V^(2+)/V^(3+) redox reaction for vanadium redox flow battery 被引量:3
5
作者 Yingqiao Jiang Mengchen Du +9 位作者 Gang Cheng Peng Gao Tingting Dong Jing Zhou Xiaojian Feng Zhangxing He Yuehua Li Lei Dai Wei Meng Ling Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期706-714,I0014,共10页
Vanadium redox flow battery(VRFB)is one of the most promising large-scale energy storage systems,which ranges from kilowatt to megawatt.Nevertheless,poor electrochemical activity of electrode for two redox couples sti... Vanadium redox flow battery(VRFB)is one of the most promising large-scale energy storage systems,which ranges from kilowatt to megawatt.Nevertheless,poor electrochemical activity of electrode for two redox couples still restricts the extensive applications of VRFB.Compared with V^(2+)/V^(3+)redox reaction,V^(2+)/V^(3+)reaction plays a more significant role in voltage loss of VRFB owing to slow heterogeneous electron transfer rate.Herein,N-doped carbon materials derived from scaphium scaphigerum have been developed as negative electrocatalyst by hydrothermal carbonization and high-temperature nitridation treatments.The undoped carbon material hardly has electrocatalytic ability for V^(2+)/V^(3+)reaction.Based on this,N-doped carbon materials with urea as nitrogen source exhibit excellent electrocatalytic properties.And the material nitrided at 850°C(SSC/N-850)exhibits the best performance among those from700 to 1000℃.SSC/N-850 can accelerate the electrode process including V^(2+)/V^(3+)reaction and mass transfer of active ions due to the large reaction place,more active sites,and good hydrophilicity.The effect of catalyst on comprehensive performance of cell was evaluated.SSC/N-850 can improve the charge-discharge performance greatly.Utilization of SSC/N-850 can lessen the electrochemical polarization of cell,further resulting in increased discharge capacity and energy efficiency.Discharge capacity and energy efficiency increase by 81.5%and 9.8%by using SSC/N-850 as negative catalyst at 150 m A cm^(-2),respectively.Our study reveals that the developed biomass-derived carbon materials are the low-cost and efficient negative electrocatalyst for VRFB system. 展开更多
关键词 vanadium redox flow battery ELECTROCATALYST BIOMASS Expandable characteristic Improved electrochemical kinetics
下载PDF
Glucose-derived hydrothermal carbons as energy storage booster for vanadium redox flow batteries 被引量:2
6
作者 Jiugen Qiu Baobing Huang +2 位作者 Yuchuan Liu Dongyang Chen Zailai Xie 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第6期31-39,I0002,共10页
Fabricating of high performance electrodes by a sustainable and cost effective method is essential to the development of vanadium redox flow batteries(VRFBs).In this work,an effective strategy is proposed to deposit c... Fabricating of high performance electrodes by a sustainable and cost effective method is essential to the development of vanadium redox flow batteries(VRFBs).In this work,an effective strategy is proposed to deposit carbon nanoparticles on graphite felts by hydrothermal carbonization method.This in-situ method minimizes the drop off and aggregation of carbon nanoparticles during electrochemical testing.Such integration of felts and hydrothermal carbons(HTC)produces a new electrode that combines the outstanding electrical conductivity of felts with the effective redox active sites provided by the HTC coating layer.The presence of the amorphous carbon layers on the felts is found to be able to promote the mass/charge transfer,and create oxygenated/nitrogenated active sites and hence enhances wettability.Consequently,the most optimized electrode based on a rational approach delivers an impressive electrochemical performance toward VRFBs in wide range of current densities from 200 to 500 mAcm^-2.The voltage efficiency(VE)of GFs-HTC is much higher than the VEs of the pristine GFs,especially at high current densities.It exhibits a 4.18 times increase in discharge capacity over the pristine graphite felt respectively,at a high current density of 400 mAcm^-2.The enhanced performance is attributed to the abundant active sites from amorphous hydrothermal carbon,which facilitates the fast electrochemical kinetics of vanadium redox reactions.This work evidences that the glucose-derived hydrothermal carbons as energy storage booster hold great promise in practical VRFBs application. 展开更多
关键词 vanadium redox flow BATTERIES Carbon nanoparticles Graphite felts Hydrothermal CARBONS GLUCOSE
下载PDF
A new long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(PPO)/polybenzimidazole(PBI)amphoteric membrane for vanadium redox flow battery 被引量:3
7
作者 Bowen Jiang Lei Hu +5 位作者 Xiaoming Yan Jiahui Sun Li Gao Yan Dai Xuehua Ruan Gaohong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1918-1924,共7页
A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair... A new amphoteric membrane was prepared by blending long-side-chain sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)(S-L-PPO)and polybenzimidazole(PBI)for vanadium redox flow battery(VRFB)application.An acid-base pair structure formed between the imidazole of PBI and sulfonic acid of S-L-PPO resulted in lowered swelling ratio.It favors to reduce the vanadium permeation.While,the increased sulfonic acid concentration ensured that proton conductivity was still at a high level.As a result,a better balance between the vanadium ion permeation(6.1×10^-9 cm^2·s^-1)and proton conductivity(50.8 m S·cm^-1)in the S-L-PPO/PBI-10%membrane was achieved.The VRFB performance with S-L-PPO/PBI-10%membrane exhibited an EE of 82.7%,which was higher than those of pristine S-L-PPO(81.8%)and Nafion 212(78.0%)at 120 m A·cm^-2.In addition,the S-LPPO/PBI-10%membrane had a much longer self-discharge duration time(142 h)than that of Nafion 212(23 h). 展开更多
关键词 Amphoteric membrane Poly(2 6-dimethyl-1 4-phenylene oxide)(PPO) vanadium redox flow battery Polybenzimidazole(PBI) Long side chain
下载PDF
A review of electrolyte additives and impurities in vanadium redox flow batteries 被引量:10
8
作者 Liuyue Cao Maria Skyllas-Kazacos +1 位作者 Chris Menictas Jens Noack 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1269-1291,共23页
As one of the most important components of the vanadium redox flow battery (VRFB), the electrolyte can impose a significant impact on cell properties, performance and capital cost. In particular, the electrolyte com... As one of the most important components of the vanadium redox flow battery (VRFB), the electrolyte can impose a significant impact on cell properties, performance and capital cost. In particular, the electrolyte composition will influence energy density, operating temperature range and the practical applications of the VRFB. Various approaches to increase the energy density and operating temperature range have been proposed. The presence of electrolyte impurities, or the addition of a small amount of other chemical species into the vanadium solution can alter the stability of the electrolyte and influence cell perfor- mance, operating temperature range, energy density, electrochemical kinetics and cost effectiveness. This review provides a detailed overview of research on electrolyte additives including stabilizing agents, im- mobilizing agents, kinetic enhancers, as well as electrolyte impurities and chemical reductants that can be used for different purposes in the VRFBs. 展开更多
关键词 vanadium redox flow battery Electrolyte additive Precipitation inhibitor Stabilizing agent Kinetic enhancer IMPURITY Immobilizing agents Reducing agent
下载PDF
KHCO_3 activated carbon microsphere as excellent electrocatalyst for VO^(2+)/VO_2^+ redox couple for vanadium redox flow battery 被引量:5
9
作者 Chen Zhao Yuehua Li +8 位作者 Zhangxing He Yingqiao Jiang Lu Li Fengyun Jiang Huizhu Zhou Jing Zhu Wei Meng Ling Wang Lei Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第2期103-110,共8页
In this paper,carbon microsphere prepared by hydrothermal treatment was activated by KHCO_3 at high temperature,and employed as the catalyst for VO^(2+)/VO_2^+redox reaction for vanadium redox flow battery(VRFB).Carbo... In this paper,carbon microsphere prepared by hydrothermal treatment was activated by KHCO_3 at high temperature,and employed as the catalyst for VO^(2+)/VO_2^+redox reaction for vanadium redox flow battery(VRFB).Carbon microsphere can be etched by KHCO_3 due to the reaction between the pyrolysis products of KHCO_3 and carbon atoms.Moreover,KHCO_3 activation can bring many oxygen functional groups on carbon microsphere,further improving the wettability of catalyst and increasing the active sites.The electrocatalytic properties of carbon microsphere from hydrothermal treatment are improved by high temperature carbonization,and can further be enhanced by KHCO_3 activation.Among carbon microsphere samples,the VO^(2+)/VO_2^+redox reaction exhibits the highest electrochemical kinetics on KHCO_3 activated sample.The cell using KHCO_3 activated carbon microsphere as the positive catalyst demonstrates higher energy efficiency and larger discharge capacity,especially at high current density.The results reveal that KHCO_3 activated carbon microsphere is an efficient,low-cost carbon-based catalyst for VO^(2+)/VO_2^+redox reaction for VRFB system. 展开更多
关键词 Energy storage vanadium redox flow battery Carbon MICROSPHERE KHCO3 ETCHING
下载PDF
Modified carbon cloth as positive electrode with high electrochemical performance for vanadium redox flow batteries 被引量:5
10
作者 Zhangxing He Zhongsheng Chen +4 位作者 Wei Meng Yingqiao Jiang Gang Cheng Lei Dai Ling Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第4期720-725,共6页
Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no ... Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no obvious influence on the morphology of carbon cloth. XPS measurements indicate that the nitrogenous functional groups can be introduced on the surface of carbon cloth successfully. The electrochemical performance of V(IV)/V(V) redox couple on the prepared electrode is evaluated with cyclic voltammetry and linear sweep voltammetry measurements. The N-doped carbon cloth exhibits outstanding electrochemical activity and reversibility toward V(IV)/V(V) redox couple. The rate constant of V(IV)/V(V) redox reaction on carbon cloth can increase to 2.27 x 10(-4) cm/s from 1.47 x 10(-4) cm/s after nitrogen doping. The cell using N-doped carbon cloth as positive electrode has larger discharge capacity and higher energy efficiency compared with the cell using pristine carbon cloth. The average energy efficiency of the cell using N-doped carbon cloth for 50 cycles at 30 mA/cm(2) is 87.8%, 4.3% larger than that of the cell using pristine carbon cloth. It indicates that the N-doped carbon cloth has a promise application prospect in vanadium redox flow batteries. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved. 展开更多
关键词 vanadium redox flow batteries Carbon cloth ELECTRODE KINETICS Electrochemical performance
下载PDF
Stability of highly supersaturated vanadium electrolyte solution and characterization of precipitated phases for vanadium redox flow battery 被引量:4
11
作者 Waldemir M.Carvalho Jr Laurent Cassayre +4 位作者 Delphine Quaranta Fabien Chauvet Ranine El-Hage Theodore Tzedakis Béatrice Biscans 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第10期436-445,I0012,共11页
The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium spec... The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium species are required in the H_(2)O-H_(2)SO_(4) electrolyte in order to improve the VRFB energy density.This might lead to unwanted precipitation of vanadium compounds,whose nature has not been accurately characterized yet.For this purpose,this study reports the preparation ofⅤ^((Ⅱ)),ⅤV^((Ⅲ)),Ⅴ^((Ⅳ))andⅤ^((Ⅴ))supersaturated solutions in a 5 M H_(2)SO_(4)-H_(2)O electrolyte by an electrolytic method,from the only vanadium sulfate compound commercially available(VOSO_(4)).The precipitates obtained by ageing of the stirred solutions are representative of the solids that may form in a VRFB operated with such supersaturated solutions.The solid phases are identified using thermogravimetric analysis,X-ray diffraction and SEM.We report that dissolvedⅤ^((Ⅱ)),Ⅴ^((Ⅲ))andⅤ^((Ⅳ))species precipitate as crystals of VSO_(4),V_(2)(SO_(4))3 and VOSO_(4) hydrates and not in their anhydrous form;conversely V^((Ⅴ))precipitates as an amorphous V_(2) O_(5) oxide partially hydrated.The measured hydration degrees(respectively 1.5,9,3 and 0.26 mol of H_(2)O per mol of compound)might significantly affect the overall engineering of VRFB operating with high vanadium concentrations. 展开更多
关键词 vanadium redox flow Batteries Supersaturated electrolyte PRECIPITATION vanadium sulfate vanadium hydrates
下载PDF
Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications 被引量:2
12
作者 Ruijun Gan Yanjiao Ma +2 位作者 Shanshan Li Fengxiang Zhang Gaohong He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1189-1197,共9页
For improvement of vanadium redox flow battery (VRB) performance, novel amphoteric semi- interpenetrating membranes (ASIPN) were prepared using poly(ether ether ketone) (PEEK) and polysul- fone (PSf), the fo... For improvement of vanadium redox flow battery (VRB) performance, novel amphoteric semi- interpenetrating membranes (ASIPN) were prepared using poly(ether ether ketone) (PEEK) and polysul- fone (PSf), the former bearing sulfonic groups and the latter imidazolium. These two groups form ionic crosslinks between PEEK and PSf; meanwhile, covalent cross links were built between PSf chains with ad- dition of N-(3-aminopropyl)-imidazole. The amphoteric nature of the membrane allows facile proton and anion transport; the IPN structure and the presence of imidazolium cation effectively suppress vanadium ion crossover through the membrane. Therefore, the ASIPN based VRBs show higher Coulombic efficiency and energy efficiency than that assembled with pristine SPEEK and Nation 212 membranes. Our work demonstrates that the ASIPN membranes are promising for VRB applications. 展开更多
关键词 vanadium redox flow battery ASIPN Cross-linking Amphoteric membrane
下载PDF
The effect of phosphate additive on the positive electrolyte stability of vanadium redox flow battery 被引量:2
13
作者 Fengyu Tian Lei Wang Chang-Sheng Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第5期1376-1380,共5页
The electrolyte is one of the most important components of vanadium redox flow battery (VRFB). and its stability and solubility determines the energy density of a VRFB. The performance of current positive elec- trol... The electrolyte is one of the most important components of vanadium redox flow battery (VRFB). and its stability and solubility determines the energy density of a VRFB. The performance of current positive elec- trolyte is limited by the low stability of VO2+ at a higher temperature. Phosphate is proved to be a very effective additive to improve the stability of VO2+. Even though, the stabilizing mechanism is still not clear, which hinders the further development of VRFBs. In this paper, to clarify the effect of phosphate additive on the positive electrolyte stability, the hydration structures of VO2+ cations and the reaction mechanisms of precipitation with or without phosphate in the supporting electrolyte of H_2SO_4 solutions were investigated in detail based on calculations of electronic structure. The stable configurations of com- plexes were optimized at the B3LYP/6-311 + G(d,p) level of theory. The zero-point energies and Gibbs free energies for these complexes were further evaluated at the B3LYP/aug-cc-pVTZ level of theory. It shows that a structure of [VO_2(H_2O)_2]+ surrounded by water molecules in H2S04 solution can be formed at the room temperature. With the temperature rises, [VO_2(H_2O)_2]+ will lose a proton and form the interme- diate of VO(OH)_3, and the further dehydration among VO(OH)_3 molecules will create the precipitate of V_2O_5. When H_3PO_4 was added into electrolytes, the V-O-P bond-containing neutral compound could be formed through interaction between VO(OH)_3 and H_3PO_4, and the activation energy of forming the V-O-P bond-containing neutral compound is about 7 kcal tool-1 lower than that of the VO(OH)_3 dehydration, which could avoid the precipitation of V_2O_5 and improve the electrolyte stability. 展开更多
关键词 All vanadium redox flow battery Phosphate additive Density functional theory Transition state Reaction mechanism
下载PDF
Sucrose pyrolysis assembling carbon nanotubes on graphite felt using for vanadium redox flow battery positive electrode 被引量:2
14
作者 Haitao Yang Chuanlin Fan Qingshan Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期451-454,共4页
In the present paper, multi-walled carbon nanotubes(MWCNTs) are successfully assembled on graphite felt(GF) using sucrose pyrolysis method for the first time. The in situ formed pyrolytic carbon is chosen as the b... In the present paper, multi-walled carbon nanotubes(MWCNTs) are successfully assembled on graphite felt(GF) using sucrose pyrolysis method for the first time. The in situ formed pyrolytic carbon is chosen as the binder because it is essentially carbon materials as well as CNTs and GF which has a natural tendency to achieve high bonding strength and low contact resistance. The MWCNTs/GF electrode is demonstrated to increase surface area, reduce polarization, lower charge transfer resistance and improve energy conversion efficiency comparing with GF. This excellent electrochemical performance is mainly ascribed to the high electro-catalytic activity of MWCNTs and increasing surface area. 展开更多
关键词 vanadium redox flow batteries Multi-walled carbon nanotubes Sucrose pyrolysis Positive electrode materials REVERSIBILITY
下载PDF
SPES/PVDF Binary Membrane as an Alternative Proton Exchange Membrane in Vanadium Redox Flow Battery Application
15
作者 MAO Xi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第6期1428-1432,共5页
SPES/PVDF blends were employed to prepare the ion exchange membranes for vanadium redox flow battery(VRB) application for the first time. The addition of the highly crystalline and hydrophobic PVDF effectively limited... SPES/PVDF blends were employed to prepare the ion exchange membranes for vanadium redox flow battery(VRB) application for the first time. The addition of the highly crystalline and hydrophobic PVDF effectively limited the swelling behavior of SPES. The vanadium ion permeability of SPES/PVDF membranes was one order of magnitude lower than that of Nafion 117 membrane and pristine SPES membrane. Single cells with SPES/PVDF composite membranes showed significantly lower capacity loss, higher coulombic efficiency and higher energy efficiency than that with Nafion117 and pristine SPES membranes. The blend membrane with 40 wt% of PVDF(denoted as S_(0.6) P_(0.4)) showed energy efficiency of 83.2% at 30 mA?cm^(-2), which was superior to that of the Nafion117 and SPES membranes. In the self-discharge test, S_(0.6) P_(0.4) membrane showed twice longer duration in open circuit decay than that with Nafion 117 membrane. With all the good properties and low cost, the SPES/PVDF membranes are expected to have excellent commercial prospects as ion exchange membranes for VRB system. 展开更多
关键词 sulfonated poly(ether sulfone) poly(vinylidene fluoride) vanadium redox flow battery ion exchange membrane
下载PDF
Influence of solvent on ion conductivity of polybenzimidazole proton exchange membranes for vanadium redox flow batteries
16
作者 Yahui Wang Kaimin Feng +2 位作者 Liming Ding Lihua Wang Xutong Han 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第6期1701-1708,共8页
Polybenzimidazole(PBI)is a kind of proton transport membrane material,and its ion conductivity is a key factor affecting its application in vanadium redox flow batteries(VRFBs).The casting solvent of PBI has a signifi... Polybenzimidazole(PBI)is a kind of proton transport membrane material,and its ion conductivity is a key factor affecting its application in vanadium redox flow batteries(VRFBs).The casting solvent of PBI has a significant influence on the acid doping level of PBI membranes which is closely related to ionic conductivity.In this paper,3,3′-diaminobenzidine(DABz)and 4,4′-Dicarboxydiphenylether(DCDPE)were used as raw materials by solution condensation to prepare the PBI with ether bond groups.The chemical structure of PBI was determined by1H NMR and FT-IR,and the prepared PBI had good solubility which can be dissolved in a variety of solvents.The PBI proton exchange membranes were prepared by solution coating with 5 different solvents of N,N-dimethylformamide(DMF),N,N-dimethylacetamide(DMAc),dimethyl sulfoxide(DMSO),1-methyl-2-pyrrolidone(NMP),methane sulfonic acid(MSA).The effects of different solvents on the ion conductivity and physicochemical properties were discussed in detail.The results showed that the PBI membrane prepared by using MSA as solvent(the PBI+MSA membrane)exhibits high water uptake,acid doping level and low vanadium ion permeability.The VRFB assembled with the PBI+MSA membrane exhibited higher coulombic efficiency(CE)99.87%and voltage efficiency(VE)84.50%than that of the commercial Nafion115 membrane at100 m A·cm-2,and after 480 cycles,the EE value can still be maintained at 83.73%.The self-discharge time of a single battery was recorded to be as long as 1000 h.All experimental data indicated that MSA is the best solvent for casting PBI membrane. 展开更多
关键词 POLYBENZIMIDAZOLE SOLVENT Acid doping level Ion conductivity Proton exchange membrane vanadium redox flow batteries
下载PDF
二维-三维杂化结构Ti_(3)C_(2)T_(x)/CF作为钒电池负极的性能研究
17
作者 秦野 王硕 +2 位作者 韩松 刘畅 井明华 《电源技术》 CAS 北大核心 2024年第11期2272-2279,共8页
碳毡是目前应用最广泛的钒电池电极材料,但其应用于钒电池负极时表现出较差的电化学反应活性,严重制约了钒电池性能。针对该问题,采用湿法刻蚀制备了二维Ti_(3)C_(2)T_(x)材料,利用简单高效的物理浸渍工艺将其修饰在三维碳毡(CF)纤维表... 碳毡是目前应用最广泛的钒电池电极材料,但其应用于钒电池负极时表现出较差的电化学反应活性,严重制约了钒电池性能。针对该问题,采用湿法刻蚀制备了二维Ti_(3)C_(2)T_(x)材料,利用简单高效的物理浸渍工艺将其修饰在三维碳毡(CF)纤维表面,成功制备了高催化活性的二维-三维杂化Ti_(3)C_(2)T_(x)/CF负极材料。结果表明,负载了Ti_(3)C_(2)T_(x)的碳毡复合电极显示出更好的亲液性;比表面积达到7.8596 m^(2)/g,是空白碳毡的4.7倍;且表现出更优的电化学反应活性。以Ti_(3)C_(2)T_(x)/CF复合材料为负极的电池在200和300 mA/cm^(2)的电流密度下,相比以空白碳毡为负极的电池,其能量效率分别提升了5.8%和7.3%,具有更高的电池效率和倍率性能。 展开更多
关键词 钒电池 负极 Ti_(3)C_(2)T_(x) 复合电极材料 二维材料
下载PDF
Ultrafine SnO_(2)in situ modified graphite felt derived from metal-organic framework as a superior electrode for vanadium redox flow battery 被引量:2
18
作者 Qing-Chun Jiang Jin Li +6 位作者 Yu-Jie Yang Yu-Jie Ren Lei Dai Jia-Yi Gao Ling Wang Jia-Ye Ye Zhang-Xing He 《Rare Metals》 SCIE EI CAS CSCD 2023年第4期1214-1226,共13页
Metal-organic framework(MOF)and its derivatives have low-cost,controllable structure,and good catalytic performance,which are often used in the electrochemical field.In this work,SnO_(2)in situ modified graphite felt(... Metal-organic framework(MOF)and its derivatives have low-cost,controllable structure,and good catalytic performance,which are often used in the electrochemical field.In this work,SnO_(2)in situ modified graphite felt(SnO_(2)/GF)is prepared by hydrothermal method then simple thermal treatment using Sn-based MOF(Sn-MOF)as precursor.SnO_(2)is uniformly and firmly distributed on the GF surface rather than the common agglomeration and poor bonding of metal oxides on carbon-based electrodes,providing stable active centers for the VO^(2+)/VO_(2)^(+)and V^(2+)/V^(3+)redox reactions.At250 mA·cm^(-2),the energy efficiency of the battery with SnO_(2)/GF remains at 63.2%,while the blank one has failed.The former battery,at 100 mA·cm^(-2),has higher energy efficiency and good cycle stability(over 200 cycles).The battery performance of this study is better than that of most previous report in metal oxide-related work.This work obtains high-performance composite electrode by simple treatment of MOF,which provides a reference for the application of MOF in vanadium redox flow battery. 展开更多
关键词 vanadium redox flow battery(VRFB) Composite electrode Metal-organic framework(MOF) In situ SnO_(2)
原文传递
Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering 被引量:2
19
作者 XU Jian ZHANG Yi-qiong +8 位作者 ZHU Xiao-bo LONG Ting XU He LOU Xue-chun XU Zhi-zhao FU Hu XIANG Wei-zhe XIE Ming-ming JIA Chuan-kun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2956-2967,共12页
Vanadium redox flow batteries(VRFBs)are one of the most promising energy storage systems owing to their safety,efficiency,flexibility and scalability.However,the commercial viability of VRFBs is still hindered by the ... Vanadium redox flow batteries(VRFBs)are one of the most promising energy storage systems owing to their safety,efficiency,flexibility and scalability.However,the commercial viability of VRFBs is still hindered by the low electrochemical performance of the available carbon-based electrodes.Defect engineering is a powerful strategy to enhance the redox catalytic activity of carbon-based electrodes for VRFBs.In this paper,uniform carbon defects are introduced on the surfaces of carbon felt(CF)electrode by Ar plasma etching.Together with a higher specific surface area,the Ar plasma treated CF offers additional catalytic sites,allowing faster and more reversible oxidation/reduction reactions of vanadium ions.As a result,the VRFB using plasma treated electrode shows a power density of 1018.3 mW/cm^(2),an energy efficiency(EE)of 84.5%,and the EE remains stable over 1000 cycles. 展开更多
关键词 vanadium redox flow batteries carbon felt defect engineering plasma treatment
下载PDF
Single-layer graphene as a highly selective barrier for vanadium crossover with high proton selectivity 被引量:1
20
作者 Saheed Bukola Zhaodong Li +5 位作者 Jason Zack Christopher Antunes Carol Korzeniewski Glenn Teeter Jeffrey Blackburn Bryan Pivovar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期419-430,I0009,共13页
We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion?polymer electrolyte membranes.Vanadium ion diffusion and migration,including proton ... We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion?polymer electrolyte membranes.Vanadium ion diffusion and migration,including proton mobility through membrane composites,were studied with and without graphene under diffusion and migration conditions.Single-layer graphene was found to effectively inhibit vanadium ion diffusion and migration under specific conditions.The single-layer graphene composites also enabled remarkable ion transmission selectivity improvements over pure Nafion membranes,with proton transport being four orders of magnitude faster than vanadium ion transport.Resistivity values of 0.02±0.005Ωcm^(2) for proton and 223±4Ωcm^(2) for vanadium ion through single atomic layer graphene are reported.This high selectivity may have significant impact on flow battery applications or for other electrochemical devices where proton conductivity is required,and transport of other species is detrimental.Our results emphasize that crossover may be essentially completely eliminated in some cases,enabling for greatly improved operational viability. 展开更多
关键词 Ion selectivity Polymer electrolyte membrane redox flow battery Single-layer graphene vanadium crossover 2D nanomaterial
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部