期刊文献+
共找到1,165篇文章
< 1 2 59 >
每页显示 20 50 100
Effects of baffle position in serpentine flow channel on the performance of proton exchange membrane fuel cells
1
作者 Guodong Xia Xiaoya Zhang Dandan Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期250-262,共13页
This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstrea... This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%. 展开更多
关键词 Proton exchange membrane fuel cell Baffle position Mass transfer Net power UNIFORMITY Voltage increment
下载PDF
Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction reaction in microbial fuel cell:A review 被引量:1
2
作者 Ke Zhao Yuanxiang Shu +1 位作者 Fengxiang Li Guosong Peng 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1043-1070,共28页
Microbial fuel cell(MFC) is one synchronous power generation device for wastewater treatment that takes into account environmental and energy issues, exhibiting promising potential. Sluggish oxygen reduction reaction(... Microbial fuel cell(MFC) is one synchronous power generation device for wastewater treatment that takes into account environmental and energy issues, exhibiting promising potential. Sluggish oxygen reduction reaction(ORR) kinetics on the cathode remains by far the most critical bottleneck hindering the practical application of MFC. An ideal cathode catalyst should possess excellent ORR activity, stability, and costeffectiveness, experiments have demonstrated that bimetallic catalysts are one of the most promising ORR catalysts currently. Based on this, this review mainly analyzes the reaction mechanism(ORR mechanisms, synergistic effects), advantages(combined with characterization technologies), and typical synthesis methods of bimetallic catalysts, focusing on the application effects of early Pt-M(M = Fe, Co, and Ni) alloys to bifunctional catalysts in MFC, pointing out that the main existing challenges remain economic analysis, long-term durability and large-scale application, and looking forward to this. At last, the research trend of bimetallic catalysts suitable for MFC is evaluated, and it is considered that the development and research of metal-organic framework(MOF)-based bimetallic catalysts are still worth focusing on in the future, intending to provide a reference for MFC to achieve energy-efficient wastewater treatment. 展开更多
关键词 Bimetallic catalysts Oxygen reduction reaction Microbial fuel cell Wastewater treatment power generation
下载PDF
Influence of Cathode Modification by Chitosan and Fe^(3+)on the Electrochemical Performance of Marine Sediment Microbial Fuel Cell
3
作者 ZAI Xuerong GUO Man +4 位作者 HUANG Xiang ZHANG Huaijing CHEN Yan JI Hongwei FU Yubin 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第3期709-716,共8页
The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is ... The electrochemical performances of cathode play a key role in the marine sediment microbial fuel cells(MSMFCs)as a long lasting power source to drive instruments,especially when the dissolved oxygen concentration is very low in seawater.A CTS-Fe^(3+)modified cathode is prepared here by grafting chitosan(CTS)on a carbon fiber surface and then chelating Fe^(3+)through the coordination process.The electrochemical performance in seawater and the output power of the assembled MSMFCs are both studied.The results show that the exchange current densities of CTS and the CTS-Fe^(3+)group are 5.5 and 6.2 times higher than that of the blank group,respectively.The potential of the CTS-Fe^(3+)modified cathode increases by 138 mV.The output power of the fuel cell(613.0 mW m^(-2))assembled with CTS-Fe^(3+)is 54 times larger than that of the blank group(11.4 mW m^(-2))and the current output corresponding with the maximum power output also increases by 56 times.Due to the valence conversion between Fe^(3+)and Fe^(2+)on the modified cathode,the kinetic activity of the dissolved oxygen reduction is accelerated and the depolarization capability of the cathode is enhanced,resulting higher cell power.On the basis of this study,the new cathode materials will be encouraged to design with the complex of iron ion in natural seawater as the catalysis for oxygen reduction to improve the cell power in deep sea. 展开更多
关键词 marine sediments microbial fuel cell chitosan and iron chelation modified cathode electrochemical performance power output
下载PDF
Advances and challenges of methanol-tolerant oxygen reduction reaction electrocatalysts for the direct methanol fuel cell
4
作者 Muhammad Aizaz Ud Din Muhammad Idrees +7 位作者 Sidra Jamil Syed Irfan Ghazanfar Nazir Muhammad Ahmad Mudassir Muhammad Shahrukh Saleem Saima Batool Nanpu Cheng Rahman Saidur 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期499-513,I0013,共16页
Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fue... Methanol cross-over effects from the anode to the cathode are important parameters for reducing catalytic performance in direct methanol fuel cells.A promising candidate catalyst for the cathode in direct methanol fuel cells must have excellent activity toward oxygen reduction reaction and resistance to methanol oxidation reaction.This review focuses on the methanol tolerant noble metal-based electrocatalysts,including platinum and palladium-based alloys,noble metal–carbon based composites,transition metal-based catalysts,carbon-based metal catalysts,and metal-free catalysts.The understanding of the correlation between the activity and the synthesis method,electrolyte environment and stability issues are highlighted.For the transition metal-based catalyst,their activity,stability and methanol tolerance in direct methanol fuel cells and comparisons with those of platinum are particularly discussed.Finally,strategies to enhance the methanol tolerance and hinder the generation of mixed potential in direct methanol fuel cells are also presented.This review provides a perspective for future developments for the scientist in selecting suitable methanol tolerate catalyst for oxygen reduction reaction and designing high-performance practical direct methanol fuel cells. 展开更多
关键词 Oxygen reducing reaction Methanol tolerant electrocatalyst Portable power sources Direct methanol fuel cell
下载PDF
Study and performance test of 10 kW molten carbonate fuel cell power generation system 被引量:1
5
作者 Chengzhuang Lu Ruiyun Zhang +3 位作者 Guanjun Yang Hua Huang Jian Cheng Shisen Xu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第3期368-376,共9页
The use of high-temperature fuel cells as a power technology can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide.This work explores the performance of a 10 kW high-te... The use of high-temperature fuel cells as a power technology can improve the efficiency of electricity generation and achieve near-zero emissions of carbon dioxide.This work explores the performance of a 10 kW high-temperature molten carbonate fuel cell.The key materials of a single cell were characterized and analyzed using X-ray diffraction and scanning electron microscopy.The results show that the pore size of the key electrode material is 6.5 lm and the matrix material is a-LiAlO_(2).Experimentally,the open circuit voltage of the single cell was found to be 1.23 V.The current density was greater than 100 mA/cm^(2)at an operating voltage of 0.7 V.The 10 kW fuel cell stack comprised 80 single fuel cells with a total area of 2000 cm^(2)and achieved an open circuit voltage of greater than 85 V.The fuel cell stack power and current density could reach 11.7 kW and 104.5 mA/cm2 at an operating voltage of 56 V.The influence and long-term stable operation of the stack were also analyzed and discussed.The successful operation of a 10 kW high-temperature fuel cell promotes the large-scale use of fuel cells and provides a research basis for future investigations of fuel cell capacity enhancement and distributed generation in China. 展开更多
关键词 fuel cell stack Key materials Molten carbonate fuel cell power generation test
下载PDF
Parameters Influencing Power Generation in Eco-friendly Microbial Fuel Cells 被引量:4
6
作者 Mohamed Said Mahmoud Biao Wen +2 位作者 ZhenHua Su ShuJie Fan Yu Zhang 《Paper And Biomaterials》 2018年第1期10-16,共7页
Pulp and papermaking industries generate high volumes of carbohydrate-rich effluents. Microbial fuel cell(MFC) technology is based on organic materials' consumption and efficient power production. Using a classica... Pulp and papermaking industries generate high volumes of carbohydrate-rich effluents. Microbial fuel cell(MFC) technology is based on organic materials' consumption and efficient power production. Using a classical two-chamber lab-scale MFC design with an external resistance of2000 W, we investigated the effects of anode chamber biofilm adaptation(ACBA) and cathode chamber redox solutions(CCRS) on the operation efficiency of MFC when treating wastewater. In ACBA studies, biofilm growth activation showed an increase in the power density to 20.48, 35.18, and36.98 mW/m^2 when the acetate feeding concentrations were 3, 6, and 12 g/L,respectively. Improvement by biofilm adhesion on granular activated carbon(GAC) was examined by scanning electron microscopy(SEM). The obtained power density increased to 25.47, 33.42, and 40.39 mW/m^2 when the GAC particles concentrations were 0, 50, and 100 g/L, respectively. The generated power densities were 51.26 and 40.39 mW/m^2 as well as the obtained voltages were 0.41 and 0.72 V when the electrode area increased from 16 to 64 cm^2,respectively. Using the MFC optimized parameters, CCRS studies carried out using five different cathodic redox solutions. The results revealed that the use of manganese dioxide dissolved in hydrochloric acid generated the maximum power density of 112.6 mW/m^2, current density of 0.094 A/m^2, and voltage of1.20 V with a successful organic removal efficiency of 86.0% after 264 h of operation. 展开更多
关键词 MICROBIAL fuel cell BIOENERGY BIOFILM power density EFFLUENT
下载PDF
Power Conversion System Strategies for Fuel Cell Vehicles 被引量:1
7
作者 Kaushik Rajashekara 《电工电能新技术》 CSCD 北大核心 2005年第1期8-13,44,共7页
Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper... Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed. 展开更多
关键词 电动汽车 PEM APU 燃料电池
下载PDF
Regulation of Power Conversion in Fuel Cells
8
作者 ZHANG J. K. Scott 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第4期466-469,共4页
Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the \{... Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the \{equilibrium\} potential and work potential. With this regulation we deduced fuel cell performance equation which can describe the potential vs.the current performance curves, namely, polarization curves of fuel cells with three power source parameters: equilibrium potential E_0; internal resistance R; and power conversion coefficient K. The concept of the power conversion coefficient is a new criterion to evaluate and compare the characteristics and capacity of different fuel cells. The calculated values obtained with this equation agree with practical performance of different types of fuel cells. 展开更多
关键词 fuel cell power conversion coefficient Internal resistance PERFORMANCE POTENTIAL
下载PDF
Daily Operation Optimization of a Residential Molten Carbonate Fuel Cell Power System Using Genetic Algorithm*
9
作者 李勇 曹广益 余晴春 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第3X期349-356,共8页
关键词 MOLTEN CARBONATE fuel cell power system fuel consumption operation optimization multi-crossover resi
下载PDF
Application of Solid Oxide Fuel Cell-Auxiliary Power Unit on Different Trucks in Northeast China
10
作者 周苏 王士嘉 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期565-570,共6页
A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance o... A diesel engine of conventional trucks has a low efficiency under the idling condition,leading to a high cost for heating or cooling in the cab during night. The solution to this problem will have great significance on energy conservation and emission reduction. A new auxiliary power unit of solid oxide fuel cell( SOFCAPU) with high efficiency solves this problem perfectly. Heat pump air conditioner is considered as a promising device for the application of SOFC-APU with a high cooling and heating efficiency. To make a quantitative analysis for the application of SOFC-APU,a model is built in Matlab / Simulink. The diesel engine model and SOFC-APU model are fitted based on some experimental data of SOFC-APU and diesel engine during the idling operation. An analysis of the application of SOFC-APU on different trucks in Northeast China is comprehensively made,including efficiency and emission. 展开更多
关键词 diesel engine TRUCK heating and cooling power emissions AUXILIARY power unit of solid oxide fuel cell(SOFC-APU)
下载PDF
Maximum Power Point Tracking With Fractional Order High Pass Filter for Proton Exchange Membrane Fuel Cell
11
作者 Jianxin Liu Tiebiao Zhao YangQuan Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第1期70-79,共10页
Proton exchange membrane fuel cell(PEMFC) is widely recognized as a potentially renewable and green energy source based on hydrogen. Maximum power point tracking(MPPT) is one of the most important working conditions t... Proton exchange membrane fuel cell(PEMFC) is widely recognized as a potentially renewable and green energy source based on hydrogen. Maximum power point tracking(MPPT) is one of the most important working conditions to be considered. In order to improve the performance such as convergence and robustness under disturbance and uncertainty,a fractional order high pass filter(FOHPF) is applied for the MPPT controller design based on the traditional extremum seeking control(ESC). The controller is designed with integerorder integrator(IO-I) and low pass filter(IO-LPF) together with fractional order high pass filter(FOHPF), by substituting the normal HPF in the original ESC system. With this FOHPF ESC,better convergence and smoother performance are achieved while maintaining the robust specifications. First, tracking stability is discussed under the commensurate-order condition. Then,simulation results are included to validate the proposed new FOHPF ESC scheme under disturbance. Finally, comparison results between FOHPF ESC and the traditional ESC method are also provided. 展开更多
关键词 Extremum seeking control(ESC) fractional order high pass filter(FOHPF) fuel cell fractional controller stability maximum power point tracking(MPPT)
下载PDF
A 10kW-scale Distributed Power Plant of Natural Gas-Proton Exchange Membrane Fuel Cell 被引量:1
12
作者 BAO Cheng SU Qingquan +5 位作者 MI Wanliang LI Zhiyuan HI Quan JI Zhonghua LIU Zhixiang MAO Zongqiang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第6期988-994,共7页
A 10 kW-scale natural gas fueled proton exchange membrane fuel cell(PEMFC) distributed power plant is presented in this paper,which is designed for cogeneration of power and heat. With homemade catalysts for CO remova... A 10 kW-scale natural gas fueled proton exchange membrane fuel cell(PEMFC) distributed power plant is presented in this paper,which is designed for cogeneration of power and heat. With homemade catalysts for CO removal in a two-stage methanation process and integrated reactor in the fuel processing system,the reformed fuel with CO molar fraction less than 10-5 is obtained for the fuel cell stack. Based on Matlab/Simulink/Stateflow and xPC Target platform,a rapid control prototype(RCP) is developed for real-time condition management,signal tracking and parameter tuning,data storing,and man-machine interaction. In a typical running with 4.3 kW stack power,the hydrogen production efficiency,gross power generation efficiency and heat recovery efficiency approach to 76%,41% and 50%,respectively. The peak stack power reaches 7.3 kW. Though there is still considerable dis-tance to long-term operation at 10 kW-scale net power generation,it is a milestone for the PEMFC-based stationary application in China. 展开更多
关键词 质子交换膜燃料电池 分布式电源 天然气厂 千瓦 STATEFLOW SIMULINK Matlab 快速控制原型
下载PDF
A Direct Liquid Fuel Cell with High Power Density Using Reduced Phosphotungstic Acid as Redox Fuel
13
作者 Yiyang Liu Ting Feng +2 位作者 Shanfu Lu Haining Wang Yan Xiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期278-284,共7页
Direct liquid fuel cells(DLFCs)are proposed to address the problems of high cost and complex storage and transportation of hydrogen in traditional hydrogen-oxygen proton exchange membrane fuel cells.However,present fu... Direct liquid fuel cells(DLFCs)are proposed to address the problems of high cost and complex storage and transportation of hydrogen in traditional hydrogen-oxygen proton exchange membrane fuel cells.However,present fuels of organic small molecules used in DLFCs are restricted to problems of sluggish electrochemical kinetics and easily poisoning of precious metal catalysts.Herein,we demonstrate reduced phosphotungstic acid as a liquid fuel for DLFCs based on its advantages of high chemical and electrochemical stability,high electrochemical activity on common carbon material electrodes,and low permeability through proton exchange membranes.The application of phosphotungstic acid fuel effectively solves the problems of high cost of anode catalysts and serious fuel permeation loss in traditional DLFCs.A phosphotungstic acid fuel cell achieves a peak power density of466 mW cm^(-2)at a cell voltage of 0.42 V and good stability at current densities in the range from 20 to 200 mA cm^(-2). 展开更多
关键词 direct liquid fuel cell heteropoly acid phosphotungstic acid power density renewable fuel
下载PDF
Theoretical On-Board Hydrogen Redox Electric Power Generator for Infinite Cruising Range Fuel Cell Vehicles 被引量:2
14
作者 Katsutoshi Ono 《Journal of Energy and Power Engineering》 2017年第10期646-654,共9页
关键词 燃料电池 氧化还原 氢电池 电力发生器 车用 水电解槽 聚合物电解质 化学能转换
下载PDF
Design of hydrogen leakage detection and alarm processing system for the fuel cell power train lab
15
作者 刘明基 Cai Zhongqin +2 位作者 Li Xihao Wang Jing Ouyang Minggao 《High Technology Letters》 EI CAS 2011年第2期196-201,共6页
关键词 报警处理系统 氢气泄漏 燃料电池 动力总成 泄漏检测 设计过程 实验室 安全系统
下载PDF
Dynamic Performance of Fuel Cell Power Module for Mobility Applications
16
作者 Bouziane Mahmah Ghania Morsli +4 位作者 Mounia Belacel Hocine Benmoussa Soulef Achachera Amina Benhamou Maiouf Belhamel 《Engineering(科研)》 2013年第2期219-229,共11页
Fuel cell powered vehicles have been developed as another alternative to internal combustion engine powered vehicles for some applications including passenger cars, buses, trains, motorcycles, forklifts, electric whee... Fuel cell powered vehicles have been developed as another alternative to internal combustion engine powered vehicles for some applications including passenger cars, buses, trains, motorcycles, forklifts, electric wheelchairs, electric trolleybuses, medical carts, military engines, personal sports craft, mobility devices and other self propelled equipment. Up to now, many researches have focused on the development of the power module in the Fuel cell vehicles (FCVs) and the components of these systems such as membranes, bipolar plates, and electrodes. However, our work in this study focuses on operating the integrated fuel cell power module system efficiently for various operating conditions such as pressure, relative humidity and operating modes. In our validation we have utilized PEMFC single cell, with active area geometry 16 cm2 and of 120 cm2. Some results obtained in our study shown significant performance indicators for PEMFC stack (composed of 2 cells and 4 cells in a series) at different humidification levels. 展开更多
关键词 fuel cell power Module Mobility Applications PEMFC Stack Voltage Experimental Validation
下载PDF
Fuel Cells as Energy Systems: Efficiency, Power Limits and Thermodynamic Behavior
17
作者 S. Sieniutycz 《Journal of Energy and Power Engineering》 2011年第1期17-28,共12页
关键词 固体氧化物燃料电池 热力学行为 能源系统 功率限制 功率计算公式 电化学理论 不可逆性 化学反应
下载PDF
Current status of national integrated gasification fuel cell projects in China 被引量:6
18
作者 Suping Peng 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第3期327-334,共8页
Coal has been the main energy source in China for a long period.Therefore,the energy industry must improve coal power generation efficiency and achieve near-zero CO_(2) emissions.Integrated gasification fuel cell(IGFC... Coal has been the main energy source in China for a long period.Therefore,the energy industry must improve coal power generation efficiency and achieve near-zero CO_(2) emissions.Integrated gasification fuel cell(IGFC)systems that combine coal gasification and high-temperature fuel cells,such as solid oxide fuel cells or molten carbonate fuel cells(MCFCs),are proving to be promising for efficient and clean power generation,compared with traditional coal-fired power plants.In 2017,with the support of National Key R&D Program of China,a consortium led by the China Energy Group and including 12 institutions was formed to develop the advanced IGFC technology with near-zero CO_(2) emissions.The objectives of this project include understanding the performance of an IGFC power generation system under different operating conditions,designing master system principles for engineering optimization,developing key technologies and intellectual property portfolios,setting up supply chains for key materials and equipment,and operating the first megawatt IGFC demonstration system with near-zero CO_(2) emission,in early 2022.In this paper,the main developments and projections pertaining to the IGFC project are highlighted. 展开更多
关键词 Integrated gasification fuel cell(IGFC) fuel cell Coal-based power generation Near-zero CO_(2)emissions
下载PDF
Prospects and challenges of graphene based fuel cells 被引量:2
19
作者 Muhammad Zahir Iqbal Assad-Ur Rehman Saman Siddique 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期217-234,共18页
Novel characteristics of graphene have captured great attention of researchers for energy technology applications.Incorporation of graphene related hybrid and composite materials have demonstrated high performance and... Novel characteristics of graphene have captured great attention of researchers for energy technology applications.Incorporation of graphene related hybrid and composite materials have demonstrated high performance and durability for fuel cell energy conversion devices.This article overviews graphene based materials for fuel cell technology applications such as electrodes additives,bipolar plates and proton conducting electrolyte membrane.The graphene dispersion over electrodes has revealed enhanced exposure of electrochemically active surface area for improved electro-catalytic activity towards fuel oxidation and oxidant reduction reactions.The issue of device stack durability and degraded performance due to corrosion of bipolar plates is discussed by incorporating graphene based materials.In proton exchange membrane devices,graphene as an electrolyte has shown an excellent performance towards high ionic conductivity and power density.The graphene incorporation in fuel cell devices has exhibited commendable performance and has bright future for commercial applications. 展开更多
关键词 GRAPHENE fuel cell ELECTRO-CATALYST power density DURABILITY
下载PDF
Study on an environmental-friendly and high-efficient fuel cell energy conversion system 被引量:1
20
作者 YULi-jun CAOGuang-yi 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第1期97-101,共5页
The kinds and the distribution of the coal in China are investigated. The results indicated that the 80% coal in China is used by the method of the coal gasification. The possibility of utilization and development of ... The kinds and the distribution of the coal in China are investigated. The results indicated that the 80% coal in China is used by the method of the coal gasification. The possibility of utilization and development of the fuel cell power plant in China is analyzed. A combined cycle generation system is designed. Its net electrical efficiency is about 55%(LHV), which is higher than that of the fire power plant. So it is environmental friendly and high efficient generation mode. 展开更多
关键词 energy conservation pollution control fuel cell power plant coal gasification
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部