To overcome the failure in eliminating suspicious patterns or association rules existing in traditional association rules mining, we propose a novel method to mine item-item and between-set correlated association rule...To overcome the failure in eliminating suspicious patterns or association rules existing in traditional association rules mining, we propose a novel method to mine item-item and between-set correlated association rules. First, we present three measurements: the association, correlation, and item-set correlation measurements. In the association measurement, the all-confidence measure is used to filter suspicious cross-support patterns, while the all-item-confidence measure is applied in the correlation measurement to eliminate spurious association rules that contain negatively correlated items. Then, we define the item-set correlation measurement and show its corresponding properties. By using this measurement, spurious association rules in which the antecedent and consequent item-sets are negatively correlated can be eliminated. Finally, we propose item-item and between-set correlated association rules and two mining algorithms, I&ISCoMine_AP and I&ISCoMine_CT. Experimental results with synthetic and real retail datasets show that the proposed method is effective and valid.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 10876036 and 70871111)the Ningbo Natural Science Foundation, China (No. 2010A610113)
文摘To overcome the failure in eliminating suspicious patterns or association rules existing in traditional association rules mining, we propose a novel method to mine item-item and between-set correlated association rules. First, we present three measurements: the association, correlation, and item-set correlation measurements. In the association measurement, the all-confidence measure is used to filter suspicious cross-support patterns, while the all-item-confidence measure is applied in the correlation measurement to eliminate spurious association rules that contain negatively correlated items. Then, we define the item-set correlation measurement and show its corresponding properties. By using this measurement, spurious association rules in which the antecedent and consequent item-sets are negatively correlated can be eliminated. Finally, we propose item-item and between-set correlated association rules and two mining algorithms, I&ISCoMine_AP and I&ISCoMine_CT. Experimental results with synthetic and real retail datasets show that the proposed method is effective and valid.