We report a novel stimulated Raman scattering(SRS)microscopy technique featuring phase-controlled light focusing and aberration corrections for rapid,deep tissue 3D chemical imaging with subcellular resolution.To acco...We report a novel stimulated Raman scattering(SRS)microscopy technique featuring phase-controlled light focusing and aberration corrections for rapid,deep tissue 3D chemical imaging with subcellular resolution.To accomplish phasecontrolled SRS(PC-SRS),we utilize a single spatial light modulator to electronically tune the axial positioning of both the shortened-length Bessel pump and the focused Gaussian Stokes beams,enabling z-scanning-free optical sectioning in the sample.By incorporating Zernike polynomials into the phase patterns,we simultaneously correct the system aberrations at two separate wavelengths(~240 nm difference),achieving a~3-fold enhancement in signal-to-noise ratio over the uncorrected imaging system.PC-SRS provides>2-fold improvement in imaging depth in various samples(e.g.,polystyrene bead phantoms,porcine brain tissue)as well as achieves SRS 3D imaging speed of~13 Hz per volume for real-time monitoring of Brownian motion of polymer beads in water,superior to conventional point-scanning SRS 3D imaging.We further utilize PC-SRS to observe the metabolic activities of the entire tumor liver in living zebrafish in cellsilent region,unraveling the upregulated metabolism in liver tumor compared to normal liver.This work shows that PCSRS provides unprecedented insights into morpho-chemistry,metabolic and dynamic functioning of live cells and tissue in real-time at the subcellular level.展开更多
Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in ...Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.展开更多
Conformal domes that are shaped to meet aerodynamic requirements can increase range and speed for the host platform. Because these domes typically deviate greatly from spherical surface descriptions, a variety of aber...Conformal domes that are shaped to meet aerodynamic requirements can increase range and speed for the host platform. Because these domes typically deviate greatly from spherical surface descriptions, a variety of aberrations are induced which vary with the field-of-regard (FOR) angle. A system for correcting optical aberrations created by a conformal dome has an outer surface and an inner surface. Optimizing the inner surface is regard as static aberration correction. A deformable mirror is placed at the position of the secondary mirror in the two-mirror all reflective imaging system, which is the dynamic aberration correction. An ellipsoidal MgF2 conformal dome with a fineness ratio of 1.0 is designed as an example. The FOR angle is 0°-30°, and the design wavelength is 4μm. After the optimization at 7 zoom positions by using the design tools Code V, the root-mean-square (RMS) spot size is reduced to approximately 0.99 to 1.48 times the diffraction limit. The design results show that the performances of the conformal optical systems can be greatly improved by the combination of the static correction and the dynamic correction.展开更多
By using the derivative method, we obtained the same result with that of the previous work of Chen et al. in 2006. Different from the integral form, the derivative form of the surface expression published in this pape...By using the derivative method, we obtained the same result with that of the previous work of Chen et al. in 2006. Different from the integral form, the derivative form of the surface expression published in this paper is derived from differential equation and based on the theory of non-imaging focusing heliostat proposed by Chen et al. in 2001. The comparison of the derivative form of fixed aberration correction surface has been made with that of integral form surface as well as that of spherical surface in concentrating the solar ray.展开更多
Lattice,charge,orbital,and spin are the four fundamental degrees of freedom in condensed matter,of which the interactive coupling derives tremendous novel physical phenomena,such as high-temperature superconductivity...Lattice,charge,orbital,and spin are the four fundamental degrees of freedom in condensed matter,of which the interactive coupling derives tremendous novel physical phenomena,such as high-temperature superconductivity(high-T_c SC) and colossal magnetoresistance(CMR) in strongly correlated electronic system.Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it,and also indispensable for designing new materials and devices.Scanning transmission electron microscopy(STEM) integrating multiple techniques of structure imaging and spectrum analysis,is a comprehensive platform for providing structural,chemical and electronic information of materials with a high spatial resolution.Benefiting from the development of aberration correctors,STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization;many improvements have been achieved in recent years,thereby giving an indepth insight into material research.Here,we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides;atomic-scale mapping of ferroelectric polarization,octahedral distortions and rotations,valence state,coordination and spin ordering are presented.We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides.展开更多
In the femtosecond two-photon polymerization(2PP)experimental system,optical aberrations degrade the fabrication quality.To solve this issue,a multichannel interferometric wavefront sensing technique is adopted in the...In the femtosecond two-photon polymerization(2PP)experimental system,optical aberrations degrade the fabrication quality.To solve this issue,a multichannel interferometric wavefront sensing technique is adopted in the adaptive laser processing system with a single phase-only spatial light modulator.2PP fabrications using corrected high-order Bessel beams with the above solution have been conducted,and high-quality microstructure arrays of microtubes with 20μm diameter have been rapidly manufactured.The effectiveness of the proposed scheme is demonstrated by comparing the beam intensity distributions and 2PP results before and after aberration corrections.展开更多
In this paper,various aberrations have been analyzed.Not only the effects of aberration on geometrical center position are taken into account,but also the deviation of displayed star position energy center caused by a...In this paper,various aberrations have been analyzed.Not only the effects of aberration on geometrical center position are taken into account,but also the deviation of displayed star position energy center caused by aberration is analyzed.These two aspects have been taken into comprehensive evaluation and star position correction.The correction method based on polar coordinates is proposed,and cumbersome partition correction and calculated quantity based on two-dimensional coordinates can be simplified.The experimental results show that the correction processing based on polar coordinates is simpler and easier compared with any other correction methods.In addition,the correction results are significantly more accurate.展开更多
A coherence-based correction method was proposed in order to improve the lateral resolution and enhance the contrast of medical ultrasound imaging in the presence of phase aberration. The averaged coherence factor was...A coherence-based correction method was proposed in order to improve the lateral resolution and enhance the contrast of medical ultrasound imaging in the presence of phase aberration. The averaged coherence factor was proposed at first and used as a metric to evaluate phase aberration correction. By maximizing the averaged coherence factor, the time delay parameter of each channel was adjusted. A new set of coherence factors was calculated and the corrected data was optimized to form the final B-mode image. The simulations on point targets and a cyst phantom showed that the proposed method outperformed the nearest neighboring cross correlation method and conventional coherence-weighting method, and the lateral resolution and contrast ratio was improved by approximately 0.24mm and 18dB respectively. The proposed method combined the advantages of phase error correction and coherence-weighting, which could improve imaging qualities effectively in medical ultrasound.展开更多
In this paper we present the recent research results in the field of vision correction and supernormal vision according to the actual measurements of the wave-front aberrations and the corneal surface topography,the c...In this paper we present the recent research results in the field of vision correction and supernormal vision according to the actual measurements of the wave-front aberrations and the corneal surface topography,the clinical detection of the visual function and the laser corneal refractive surgery,and the optimization of the optical system. These include the features of the aberrations of human eye with different pupil sizes,different fields of view and temporal accommodation,the influence of the polychromatic illumination of the visible wavelength on the supernormal vision,and the effect of the existing laser corneal refractive surgery on the wave-front ab-errations of the eye. It is shown that the wave-front aberration of human eye is of temporal variation and of synthesis with multi impact factors. To achieve super-normal vision,an optimum engineering data for the customized laser corneal sur-gery should be firstly acquired,which may involve the dynamic free-form optical surface. Although the myopia can be corrected by the laser in situ keratomileusis(LASIK) in a certain degree,it brings about negative effects under scotopic condi-tions.展开更多
基金supported by the Academic Research Fund(AcRF)from the Ministry of Education(MOE)(Tier 2(A-8000117-01-00)Tier 1(R397-000-334-114,R397-000-371-114,and R397-000-378-114)2024 Tsinghua-NUS Joint Research Initiative Fund,and the National Medical Research Council(NMRC)(A-0009502-01-00,and A-8001143-00-00),Singapore.
文摘We report a novel stimulated Raman scattering(SRS)microscopy technique featuring phase-controlled light focusing and aberration corrections for rapid,deep tissue 3D chemical imaging with subcellular resolution.To accomplish phasecontrolled SRS(PC-SRS),we utilize a single spatial light modulator to electronically tune the axial positioning of both the shortened-length Bessel pump and the focused Gaussian Stokes beams,enabling z-scanning-free optical sectioning in the sample.By incorporating Zernike polynomials into the phase patterns,we simultaneously correct the system aberrations at two separate wavelengths(~240 nm difference),achieving a~3-fold enhancement in signal-to-noise ratio over the uncorrected imaging system.PC-SRS provides>2-fold improvement in imaging depth in various samples(e.g.,polystyrene bead phantoms,porcine brain tissue)as well as achieves SRS 3D imaging speed of~13 Hz per volume for real-time monitoring of Brownian motion of polymer beads in water,superior to conventional point-scanning SRS 3D imaging.We further utilize PC-SRS to observe the metabolic activities of the entire tumor liver in living zebrafish in cellsilent region,unraveling the upregulated metabolism in liver tumor compared to normal liver.This work shows that PCSRS provides unprecedented insights into morpho-chemistry,metabolic and dynamic functioning of live cells and tissue in real-time at the subcellular level.
基金National Natural Science Foundation of China(No.61201412)Ntural Science Foundation of Shanxi Province(No.2012021011-5)
文摘Phase aberration correction for medical ultrasound systems has attracted a great deal of attention. Since phased array techniques are now widely employed for industrial non-destructive testing (NDT) applications in various fields, the problem of phase aberrations in the process of NDT testing is considered. The technique of cross-covariance for phase aberration correction is presented. The performance of the technique for phase aberration correction is tested by means of echo signals obtained in practical non-destructive testing experiment. The results show that the technique has the better accuracy of phase correction.
基金supported by the National High Technology Research and Development Program of China (Grant No 2006AA012339)
文摘Conformal domes that are shaped to meet aerodynamic requirements can increase range and speed for the host platform. Because these domes typically deviate greatly from spherical surface descriptions, a variety of aberrations are induced which vary with the field-of-regard (FOR) angle. A system for correcting optical aberrations created by a conformal dome has an outer surface and an inner surface. Optimizing the inner surface is regard as static aberration correction. A deformable mirror is placed at the position of the secondary mirror in the two-mirror all reflective imaging system, which is the dynamic aberration correction. An ellipsoidal MgF2 conformal dome with a fineness ratio of 1.0 is designed as an example. The FOR angle is 0°-30°, and the design wavelength is 4μm. After the optimization at 7 zoom positions by using the design tools Code V, the root-mean-square (RMS) spot size is reduced to approximately 0.99 to 1.48 times the diffraction limit. The design results show that the performances of the conformal optical systems can be greatly improved by the combination of the static correction and the dynamic correction.
文摘By using the derivative method, we obtained the same result with that of the previous work of Chen et al. in 2006. Different from the integral form, the derivative form of the surface expression published in this paper is derived from differential equation and based on the theory of non-imaging focusing heliostat proposed by Chen et al. in 2001. The comparison of the derivative form of fixed aberration correction surface has been made with that of integral form surface as well as that of spherical surface in concentrating the solar ray.
基金Project supported by the National Key Basic Research ProjectChina(Grant No.2014CB921002)+1 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212 and 51421002)
文摘Lattice,charge,orbital,and spin are the four fundamental degrees of freedom in condensed matter,of which the interactive coupling derives tremendous novel physical phenomena,such as high-temperature superconductivity(high-T_c SC) and colossal magnetoresistance(CMR) in strongly correlated electronic system.Direct experimental observation of these freedoms is essential to understanding the structure-property relationship and the physics behind it,and also indispensable for designing new materials and devices.Scanning transmission electron microscopy(STEM) integrating multiple techniques of structure imaging and spectrum analysis,is a comprehensive platform for providing structural,chemical and electronic information of materials with a high spatial resolution.Benefiting from the development of aberration correctors,STEM has taken a big breakthrough towards sub-angstrom resolution in last decade and always steps forward to improve the capability of material characterization;many improvements have been achieved in recent years,thereby giving an indepth insight into material research.Here,we present a brief review of the recent advances of STEM by some representative examples of perovskite transition metal oxides;atomic-scale mapping of ferroelectric polarization,octahedral distortions and rotations,valence state,coordination and spin ordering are presented.We expect that this brief introduction about the current capability of STEM could facilitate the understanding of the relationship between functional properties and these fundamental degrees of freedom in complex oxides.
基金supported by the National Natural Science Foundation of China(Nos.62275191,61605142,and 61827821)the Tianjin Research Program of Application FoundationandAdvancedTechnologyofChina(No.17JCJQJC43500)+2 种基金the Open Fund of the State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciencesthe European Research Council(No.682032-PULSAR)the Agence Nationale de la Recherche(Nos.ANR-15-IDEX0003 and ANR-17-EURE-0002)。
文摘In the femtosecond two-photon polymerization(2PP)experimental system,optical aberrations degrade the fabrication quality.To solve this issue,a multichannel interferometric wavefront sensing technique is adopted in the adaptive laser processing system with a single phase-only spatial light modulator.2PP fabrications using corrected high-order Bessel beams with the above solution have been conducted,and high-quality microstructure arrays of microtubes with 20μm diameter have been rapidly manufactured.The effectiveness of the proposed scheme is demonstrated by comparing the beam intensity distributions and 2PP results before and after aberration corrections.
文摘In this paper,various aberrations have been analyzed.Not only the effects of aberration on geometrical center position are taken into account,but also the deviation of displayed star position energy center caused by aberration is analyzed.These two aspects have been taken into comprehensive evaluation and star position correction.The correction method based on polar coordinates is proposed,and cumbersome partition correction and calculated quantity based on two-dimensional coordinates can be simplified.The experimental results show that the correction processing based on polar coordinates is simpler and easier compared with any other correction methods.In addition,the correction results are significantly more accurate.
基金supported by the National Natural Science Foundation of China(11204346)
文摘A coherence-based correction method was proposed in order to improve the lateral resolution and enhance the contrast of medical ultrasound imaging in the presence of phase aberration. The averaged coherence factor was proposed at first and used as a metric to evaluate phase aberration correction. By maximizing the averaged coherence factor, the time delay parameter of each channel was adjusted. A new set of coherence factors was calculated and the corrected data was optimized to form the final B-mode image. The simulations on point targets and a cyst phantom showed that the proposed method outperformed the nearest neighboring cross correlation method and conventional coherence-weighting method, and the lateral resolution and contrast ratio was improved by approximately 0.24mm and 18dB respectively. The proposed method combined the advantages of phase error correction and coherence-weighting, which could improve imaging qualities effectively in medical ultrasound.
基金Supported by the National Natural Science Foundation of China (Grant No. 60438030)the Key Research Foundation of Scientific and Technical Committee of Tianjin City of China (Grant No. 033183711)
文摘In this paper we present the recent research results in the field of vision correction and supernormal vision according to the actual measurements of the wave-front aberrations and the corneal surface topography,the clinical detection of the visual function and the laser corneal refractive surgery,and the optimization of the optical system. These include the features of the aberrations of human eye with different pupil sizes,different fields of view and temporal accommodation,the influence of the polychromatic illumination of the visible wavelength on the supernormal vision,and the effect of the existing laser corneal refractive surgery on the wave-front ab-errations of the eye. It is shown that the wave-front aberration of human eye is of temporal variation and of synthesis with multi impact factors. To achieve super-normal vision,an optimum engineering data for the customized laser corneal sur-gery should be firstly acquired,which may involve the dynamic free-form optical surface. Although the myopia can be corrected by the laser in situ keratomileusis(LASIK) in a certain degree,it brings about negative effects under scotopic condi-tions.