期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Optimizing the power conversion processes in diluted donor/acceptor heterojunctions towards 19.4%efficiency all-polymer solar cells
1
作者 Liang Wang Chen Chen +11 位作者 Zirui Gan Chenhao Liu Chuanhang Guo Weiyi Xia Wei Sun Jingchao Cheng Yuandong Sun Jing Zhou Zexin Chen Dan Liu Wei Li Tao Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期345-350,共6页
All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure... All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device. 展开更多
关键词 all-polymer solar cells Power conversion efficiency Structural order Charge generation
下载PDF
All-Polymer Solar Cells and Photodetectors with Improved Stability Enabled by Terpolymers Containing Antioxidant Side Chains 被引量:1
2
作者 Chunyang Zhang Ao Song +7 位作者 Qiri Huang Yunhao Cao Zuiyi Zhong Youcai Liang Kai Zhang Chunchen Liu Fei Huang Yong Cao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期190-204,共15页
It is of vital importance to improve the long-term and photostability of organic photovoltaics,including organic solar cells(OSCs)and organic photodetectors(OPDs),for their ultimate industrialization.Herein,two series... It is of vital importance to improve the long-term and photostability of organic photovoltaics,including organic solar cells(OSCs)and organic photodetectors(OPDs),for their ultimate industrialization.Herein,two series of terpolymers featuring with an antioxidant butylated hydroxytoluene(BHT)-terminated side chain,PTzBI-EHp-BTBHTx and N2200-BTBHTx(x=0.05,0.1,0.2),are designed and synthesized.It was found that incorporating appropriate ratio of benzothiadiazole(BT)with BHT side chains on the conjugated backbone would induce negligible effect on the molecular weight,absorption spectra and energy levels of polymers,however,which would obviously enhance the photostability of these polymers.Consequently,all-polymer solar cells(all-PSCs)and photodetectors were fabricated,and the all-PSC based on PTzBI-EHp-BTBHT0.05:N2200 realized an optimal power conversion efficiency(PCE)approaching~10%,outperforming the device based on pristine PTzBI-EHp:N2200.Impressively,the all-PSCs based on BHT-featuring terpolymers displayed alleviated PCEs degradation under continuous irradiation for 300 h due to the improved morphological and photostability of active layers.The OPDs based on BHT-featuring terpolymers achieved a lower dark current at−0.1 bias,which could be stabilized even after irradiation over 400 h.This study provides a feasible approach to develop terpolymers with antioxidant efficacy for improving the lifetime of OSCs and OPDs. 展开更多
关键词 Organic photovoltaics Device operational stability all-polymer solar cell Organic photodetector ANTIOXIDANT
下载PDF
Optimizing the morphology of all-polymer solar cells for enhanced photovoltaic performance and thermal stability
3
作者 Kang An Wenkai Zhong +8 位作者 Chunguang Zhu Feng Peng Lei Xu Zhiwei Lin Lei Wang Cheng Zhou Lei Ying Ning Li Fei Huang 《Journal of Semiconductors》 EI CAS CSCD 2023年第5期34-41,共8页
Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential dep... Due to the complicated film formation kinetics, morphology control remains a major challenge for the development of efficient and stable all-polymer solar cells(all-PSCs). To overcome this obstacle, the sequential deposition method is used to fabricate the photoactive layers of all-PSCs comprising a polymer donor PTzBI-oF and a polymer acceptor PS1. The film morphology can be manipulated by incorporating amounts of a dibenzyl ether additive into the PS1 layer. Detailed morphology investigations by grazing incidence wide-angle X-ray scattering and a transmission electron microscope reveal that the combination merits of sequential deposition and DBE additive can render favorable crystalline properties as well as phase separation for PTzBI-oF:PS1 blends. Consequently, the optimized all-PSCs delivered an enhanced power conversion efficiency(PCE) of 15.21%along with improved carrier extraction and suppressed charge recombination. More importantly, the optimized all-PSCs remain over 90% of their initial PCEs under continuous thermal stress at 65 °C for over 500 h. This work validates that control over microstructure morphology via a sequential deposition process is a promising strategy for fabricating highly efficient and stable all-PSCs. 展开更多
关键词 MORPHOLOGY all-polymer solar cells thermal stability sequential deposition
下载PDF
Effects of Flexible Conjugation-Break Spacers of Non-Conjugated Polymer Acceptors on Photovoltaic and Mechanical Properties of All-Polymer Solar Cells 被引量:3
4
作者 Qiaonan Chen Yung Hee Han +12 位作者 Leandro R.Franco Cleber F.N.Marchiori Zewdneh Genene CMoyses Araujo Jin-Woo Lee Tan Ngoc-Lan Phan Jingnan Wu Donghong Yu Dong Jun Kim Taek-Soo Kim Lintao Hou Bumjoon J.Kim Ergang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第10期164-177,共14页
All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)in... All-polymer solar cells(all-PSCs)possess attractive merits including superior thermal stability and mechanical flexibility for large-area roll-to-roll processing.Introducing flexible conjugation-break spacers(FCBSs)into backbones of polymer donor(P_(D))or polymer acceptor(P_(A))has been demonstrated as an efficient approach to enhance both the photovoltaic(PV)and mechanical properties of the all-PSCs.However,length dependency of FCBS on certain all-PSC related properties has not been systematically explored.In this regard,we report a series of new non-conjugated P_(A)s by incorporating FCBS with various lengths(2,4,and 8 carbon atoms in thioalkyl segments).Unlike com-mon studies on so-called side-chain engineering,where longer side chains would lead to better solubility of those resulting polymers,in this work,we observe that the solubilities and the resulting photovoltaic/mechanical properties are optimized by a proper FCBS length(i.e.,C2)in P_(A) named PYTS-C2.Its all-PSC achieves a high efficiency of 11.37%,and excellent mechanical robustness with a crack onset strain of 12.39%,significantly superior to those of the other P_(A)s.These results firstly demonstrate the effects of FCBS lengths on the PV performance and mechanical properties of the all-PSCs,providing an effective strategy to fine-tune the structures of P_(A)s for highly efficient and mechanically robust PSCs. 展开更多
关键词 all-polymer solar cells Flexible conjugation-break spacers Mechanical robustness Polymer acceptors Stretchability
下载PDF
Novel polymer acceptors achieving 10.18% efficiency for all-polymer solar cells 被引量:2
5
作者 Shaorong Huang Feiyan Wu +3 位作者 Zuoji Liu Yongjie Cui Lie Chena Yiwang Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期63-68,I0003,共7页
Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-... Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-based polymer acceptors. To expand structural diversity of the polymer acceptors, herein,two polymer acceptors PSF-IDIC and PSi-IDIC with extended fused ring p skeleton are developed by copolymerization of 2,20-((2 Z,20 Z)-((4,4,9,9-tetrahexadecyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithio phene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile(IDIC-C16) block with sulfur(S) and fluorine(F) functionalized benzodithiophene(BDT) unit and silicon(Si) atom functionalized BDT unit, respectively. Both polymer acceptors exhibit strong light absorption.The PSF-IDIC exhibits similar energy levels and slightly higher absorption coefficient relative to the PSi-IDIC. After blended with the donor polymer PM6, the functional atoms on the polymer acceptors show quite different effect on the device performance. Both of the acceptors deliver a notably high open circuit voltage(V_(OC)) of the devices, but PSi-IDIC achieves higher V OCthan PSF-IDIC. All-PSC based on PM6:PSi-IDIC attains a power conversion efficiency(PCE) of 8.29%, while PM6:PSF-IDIC-based device achieves a much higher PCE of 10.18%, which is one of the highest values for the all-PSCs reported so far. The superior device performance of PM6:PSF-IDIC is attributed to its higher exciton dissociation and charge transport, decreased charge recombination, and optimized morphology than PM6:PSi-IDIC counterpart. These results suggest that optimizing the functional atoms of the side chain provide an effective strategy to develop high performance polymer acceptors for all-PSCs. 展开更多
关键词 all-polymer solar cells Polymer acceptor Functional atoms Power conversion efficiency
下载PDF
Non-conjugated terpolymer acceptors for highly efficient and stable lager-area all-polymer solar cells 被引量:1
6
作者 Jiabin Liu Jinliang Liu +8 位作者 Jiawei Deng Bin Huang Jiyeon Oh Lin Zhao Liang Liu Changduk Yang Dong Chen Feiyan Wu Lie Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期631-638,I0017,共9页
All-polymer solar cells(all-PSCs)have made significant progress recently,but few studies have been conducted to investigate the lab-to-manufacturing translation from the spin-coating method to the printing process.Her... All-polymer solar cells(all-PSCs)have made significant progress recently,but few studies have been conducted to investigate the lab-to-manufacturing translation from the spin-coating method to the printing process.Here,the random copolymerization method and non-conjugated backbone approach are integrated to manipulate the morphology and photoelectric properties of the active layer for large-area printed all-PSCs.A series of non-conjugated terpolymer acceptors PYSe-TC_(6)T(x)(x=5,10,and 20,refers to the molar ratio of TC_(6)T unit)are developed by covalently introducing non-conjugated unit TC_(6)T into the PYSe host bipolymer by random copolymerization.The spin-coated PYSe-TC_(6)T(10)-based all-PSC demonstrates the best power conversion efficiency(PCE)of 13.54%,superior to the PYSe-based one(12.45%).More intriguingly,morphological studies reveal that a combination of the random polymerization and non-conjugated backbone strategy can effectively prevent the active layer from overaggregation and improve the film quality during the printing process,thereby minimizing the efficiency and technology gap between spin-coated small-area devices and blade-coated large-area devices.By directly using the same preparation condition of spin-coating,the blade-coated small-area(0.04 cm^(2))delivers a PCE of 12.83%and the large-area(1.21 cm^(2))device achieves a PCE of 11.96%with a small PCE loss.Both PCE value and PCE loss are one of the most outstanding performances of the bladecoated all-PSCs.These findings reveal that a combination of the non-conjugated flexible backbone with random copolymerization to develop non-conjugated terpolymers is an attractive design concept to smoothly realize the lab-to-manufacturing translation. 展开更多
关键词 all-polymer Non-conjugated Large area Blade-coating Lab-to-manufacturing translation
下载PDF
A new low-bandgap polymer acceptor based on benzotriazole for efficient all-polymer solar cells 被引量:1
7
作者 LI Zhe CHEN Hong-gang +4 位作者 YUAN Jun ZOU Jie LI Jing GUAN Hui-lan ZOU Ying-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第7期1919-1931,共13页
The rational design of polymer acceptors with strong and broad absorption is critical to improve photovoltaic performance.In this work,a new polymer acceptor PY9-T based on heptacyclic benzotriazole(Y9-C16)as a buildi... The rational design of polymer acceptors with strong and broad absorption is critical to improve photovoltaic performance.In this work,a new polymer acceptor PY9-T based on heptacyclic benzotriazole(Y9-C16)as a building block and thiophene unit as the linking unit was synthesized,which exhibited a low bandgap(1.37 eV)and a high extinction coefficient of the neat film(1.44×10^(5) cm^(−1)).When PY9-T was blended with the wide bandgap polymer donor PBDB-T,the all-polymer solar cells(APSCs)showed a high power conversion efficiency(PCE)of 10.45%with both high open circuit voltage of 0.881 V and short-circuit current density of 19.82 mA/cm^(2).In addition,APSCs based on PY9-T show good thermal stability,as evidenced by slight changes morphologies when annealed at 100℃.These results suggest that Y9-C16 provides a new building block to develop efficient and stable polymer acceptors. 展开更多
关键词 all-polymer solar cells polymer acceptor low-bandgap BENZOTRIAZOLE power conversion efficiency
下载PDF
Polymerized A-DA'D-A type small-molecule acceptors for high performance all-polymer solar cells: progress and perspective 被引量:2
8
作者 Ting Yang Chuanlang Zhan 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第9期2513-2531,共19页
A-DA'D-A type polymerized small-molecule acceptors(PSMAs) have very recently received wide attention because they possess advantages such as synthetic flexibility, narrowed bandgap, low energy loss, and impressive... A-DA'D-A type polymerized small-molecule acceptors(PSMAs) have very recently received wide attention because they possess advantages such as synthetic flexibility, narrowed bandgap, low energy loss, and impressive mechanical properties. With efforts on design and synthesis of PSMAs and polymer donors, significant progress has been made on all polymer solar cells(allPSCs) with power conversion efficiencies exceeding 18%. In this review, we focus on structure-property-performance relationships of the A-DA'D-A type PSMAs. First, we in-depth review the regio-random, regio-regular, and random ternary series by focusing on their structural modification such as from aspects of side-chains, halogenation, selenophene-containing and linkers, respectively. Second, we review the mechanically flexible and stretchable properties, which helps to find structural gene that correlates the mechanical properties. Third, we review the impressive small energy loss. In all, this review provides structural and material's clues, helpfully for designing high-performance all-PSCs. 展开更多
关键词 all-polymer solar cell polymerized small-molecule acceptor regio-random regio-regular TERPOLYMER energy loss
原文传递
Recent Research Progress of n-Type Conjugated Polymer Acceptors and All-Polymer Solar Cells 被引量:2
9
作者 Xiao-Jun Li Guang-Pei Sun +1 位作者 Yu-Fei Gong Yong-Fang Li 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第5期640-651,I0006,共13页
The active layer of all polymer solar cells(all-PSCs)is composed of a blend of a p-type conjugated polymer(p-CP)as donor and an n-type conjugated polymer(n-CP)as acceptor.All-PSCs possess the advantages of light weigh... The active layer of all polymer solar cells(all-PSCs)is composed of a blend of a p-type conjugated polymer(p-CP)as donor and an n-type conjugated polymer(n-CP)as acceptor.All-PSCs possess the advantages of light weight,thin active layer,mechanical flexibility,low cost solution processing and high stability,but the power conversion efficiency(PCE)of the all-PSCs was limited by the poor photovoltaic performance of the n-CP acceptors before 2016.Since the report of the strategy of polymerized small molecule acceptors(PSMAs)in 2017,the photovoltaic performance of the PSMA-based n-CPs improved rapidly,benefitted from the development of the A-DA’D-A type small molecule acceptors(SMAs).PCE of the all-PSCs based on the PSMA acceptors reached 17%-18%recently.In this review article,we will introduce the development history of the n-CPs,especially the recent research progress of the PSMAs.Particularly,the structure-property relationship of the PSMAs is introduced and discussed.Finally,current challenges and prospects of the n-CP acceptors are analyzed and discussed. 展开更多
关键词 n-Type conjugated polymers all-polymer solar cells Polymer acceptors Polymerized small molecule acceptors
原文传递
Host-Guest Strategy Enabling Nonhalogenated Solvent Processing for High-Performance All-Polymer Hosted Solar Cells 被引量:1
10
作者 Yuting Huang Haiyang Chen +9 位作者 Qunping Fan Ziyuan Chen Junyuan Ding Heyi Yang Zhe Sun Rui Zhang Weijie Chen Changduk Yang Feng Gao Yaowen Li 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第9期1066-1074,共9页
The power conversion efficiencies(PCEs)of all-polymer solar cells(all-PSCs),usually processed from low-boiling-point and toxic sol-vents,have reached high values of 18%.However,poor miscibility and uncontrollable crys... The power conversion efficiencies(PCEs)of all-polymer solar cells(all-PSCs),usually processed from low-boiling-point and toxic sol-vents,have reached high values of 18%.However,poor miscibility and uncontrollable crystallinity in polymer blends lead to a nota-ble drop in the PCEs when using green solvents,limiting the practical development of all-PSCs.Herein,a third component(guest)BTO was employed to optimize the miscibility and enhance the crystallinity of PM6/PY2Se-F host film processed from green solvent toluene(TL),which can effectively suppress the excessive aggregation of PY2Se-F and facilitate a nano-scale interpenetrating net-work morphology for exciton dissociation and charge transport.As a result,TL-processed all-polymer hosted solar cells(all-PHSCs)exhibited an impressive PCE of 17.01%.Moreover,the strong molecular interaction between the host and guest molecules also en-hances the thermal stability of the devices.Our host-guest strategy provides a unique approach to developing high-efficiency and stable all-PHSCs processed from green solvents,paving the way for the industrial development of all-PHSCs. 展开更多
关键词 all-polymer solar cells Host-guest systems Crystal engineering Nonhalogenated green solvent Stability Morphology MISCIBILITY Ternary blend solar cells
原文传递
Regioregular Non-Fused Polymerized Small Molecular Acceptors Enabling Efficient All-Polymer Solar Cells 被引量:1
11
作者 Baoqi Wu Youle Li +7 位作者 Shizeng Tian Yue Zhang Langheng Pan Kangzhe Liu Mingqun Yang Fei Huang Yong Cao Chunhui Duan 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第7期790-796,共7页
Comprehensive Summary The regioregularity induced by the isomers of the end-groups has been widely recognized as a key factor that determines the photovoltaic properties of polymerized small molecular acceptors(PSMAs)... Comprehensive Summary The regioregularity induced by the isomers of the end-groups has been widely recognized as a key factor that determines the photovoltaic properties of polymerized small molecular acceptors(PSMAs)in all-polymer solar cells(all-PSCs).However,the influence of regioregularity on the photovoltaic properties of non-fused PSMAs has not been explored yet.In this contribution,two regioregular non-fused PSMAs,PFBTz-T-γand PFBTz-T-δ,were synthesized for the first time by using the monomers with isomeric pure end-groups.Compared with PFBTz-T-δ,PFBTz-T-γhas more compact and more ordered packing in solid state,which results in a more red-shifted optical absorption and a higher electron mobility.More remarkably,PFBTz-T-γand PFBTz-T-δexhibited huge difference in photovoltaic performance in all-PSCs,which offered the power conversion efficiencies(PCEs)of 9.72%and 0.52%,respectively.Further studies have unveiled that the higher PCE of PFBTz-T-γis due to more efficient exciton dissociation,higher and more balanced electron/hole mobility,and less charge recombination as a result of favorable morphology of the blend film.This work demonstrates that the development of regioregular non-fused PSMAs by tuning the polymerization sites is an effective strategy for obtaining high-efficiency all-PSCs. 展开更多
关键词 all-polymer solar cells Non-fused framework Polymer acceptors REGIOREGULARITY Morphology regulation
原文传递
8.30%Efficiency P3HT-based all-polymer solar cells enabled by a miscible polymer acceptor with high energy levels and efficient electron transport 被引量:1
12
作者 Ziqi Liang Jiangting He +5 位作者 Bin Zhao Mengyuan Gao Yu Chen Long Ye Miaomiao Li Yanhou Geng 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第1期216-227,共12页
P3HT stands out from numerous polymer donors owing to the merits of low cost and high scalability of synthesis.However,the photovoltaic performance of P3HT-based blends lags significantly behind the state-of-the-art s... P3HT stands out from numerous polymer donors owing to the merits of low cost and high scalability of synthesis.However,the photovoltaic performance of P3HT-based blends lags significantly behind the state-of-the-art systems,especially for all-polymer solar cells(APSCs) that generally show efficiency of around 3%–4% due to the lack of matched polymer acceptors.Herein,a polymer acceptor,named IDTBTC8-CN,was designed and synthesized with indacenodithiophene(IDT) and mono-cyano(CN)-substituted benzothiadiazole(BT-CN) as building blocks.Introducing a CN group endowed the polymer with decreased bandgap,and apparent n-type charge transport character despite the relatively high energy levels.Additionally,IDTBTC8-CN showed largely improved miscibility with P3HT,compared with that of BT-based control polymer IDTBTC8.The high miscibility between P3HT and IDTBTC8-CN as well as the amorphous aggregation behavior of IDTBTC8-CN enabled a broad manipulation room for the blend film to acquire favorable morphology.Eventually,a champion efficiency of 8.30% was achieved,in sharp contrast to that of the IDTBTC8-based system(1.21%).Such efficiency is a new record for P3HT-based APSCs reported so far.Moreover,P3HT:IDTBTC8-CN blend film also exhibited excellent mechanical robustness.This study implies the guidance of molecular design of the polymer acceptors and morphology control for P3HT-based APSCs. 展开更多
关键词 all-polymer solar cells poly(3-hexylthiophene) polymer acceptors energy levels film morphology
原文传递
π-Extended End Groups Enable High-Performance All-Polymer Solar Cells with Near-Infrared Absorption 被引量:1
13
作者 Linfeng Yu Haiqin Xiao +4 位作者 Yu Shi Xia Guo Xinxin Xia Xinhui Lu Maojie Zhang 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第23期3261-3267,共7页
Narrow-bandgap n-type polymers are essential for advancing the development of all-polymer solar cells(all-PSCs).Herein,we developed a novel polymer acceptor PNT withπ-extended 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]nap... Narrow-bandgap n-type polymers are essential for advancing the development of all-polymer solar cells(all-PSCs).Herein,we developed a novel polymer acceptor PNT withπ-extended 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile(CPNM)end groups.Compared to commonly used 2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1ylidene)malononitrile(IC)units,CPNM units have a further extended fused ring,providing the PNT polymer with extended absorption into the near-IR region(903 nm)and exhibiting a narrow optical bandgap(1.37 eV).Furthermore,PNT exhibits a high electron mobility(6.79×10^(−4) cm^(2)·V^(−1)·S^(−1))and a relatively high-lying lowest unoccupied molecular orbital(LUMO)energy level of−3.80 eV.When blended with PBDB-T,all-PSC achieves a power conversion efficiency(PCE)of 13.7%and a high short-circuit current density(JSC)of 24.4 mA·cm^(−2),mainly attributed to broad absorption(600—900 nm)and efficient charge separation and collection.Our study provides a promising polymer acceptor for all-PSCs and demonstrates thatπ-extended CPNM units are important to achieve high-performance for all-PSCs. 展开更多
关键词 Polymer acceptors π-Extended end groups High short-circuit current density Narrow-bandgap all-polymer solar cells
原文传递
Multifunctional all-polymer photovoltaic blend with simultaneously improved efficiency(18.04%),stability and mechanical durability 被引量:2
14
作者 Tao Liu Kangkang Zhou +8 位作者 Ruijie Ma Libin Zhang Ciyuan Huang Zhenghui Luo Hongxiang Zhu Shangfei Yao Chuluo Yang Bingsuo Zou Long Ye 《Aggregate》 2023年第3期184-191,共8页
One of the most appealing material systems for solar energy conversion is allpolymer blend.Presently,the three key merits(power conversion efficiency,operation stability and mechanical robustness)exhibited a trade-off... One of the most appealing material systems for solar energy conversion is allpolymer blend.Presently,the three key merits(power conversion efficiency,operation stability and mechanical robustness)exhibited a trade-off in a particular all-polymer blend system,which greatly limit its commercial application.Diverting the classic ternary tactic of organic solar cells based on polymer,nonfullerene small molecule and fullerene,herein we demonstrate that the three merits of a benchmark all-polymer blend PM6:PY-IT can be simultaneously maximized via the introduction of a polymerized fullerene derivative PPCBMB.Importantly,the addition of the guest component promoted the power conversion efficiency of PM6:PY-IT blend from 16.59%to 18.04%.Meanwhile,the device stability and film ductility are also improved due to the addition of this polymerized fullerene material.Morphology and device physics analyses reveal that optimal ternary system contains well-maintained molecular packing and crystallinity,being beneficial to keeping favorable charge transport and the reduced domain size contributed to charge generation and ductility improvement.Furthermore,the ternary photovoltaic blend was successfully used as photocatalysts,and an excellent heavy metal removal from water was demonstrated.This study showcases the multi-functions of all-polymer blends via the use of polymerized fullerenes. 展开更多
关键词 all-polymer blend photovoltaic performance ternary design
原文传递
Conjugation expansion strategy enables highly stable all-polymer solar cells
15
作者 Dingding Qiu Yanan Shi +3 位作者 Yi Li Jianqi Zhang Kun Lu Zhixiang Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期439-443,共5页
The stability issue is one of the key factors hindering the commercial application of organic solar cells.All-polymer organic solar cell is one of the effective ways to solve the stability problem.In this work,we desi... The stability issue is one of the key factors hindering the commercial application of organic solar cells.All-polymer organic solar cell is one of the effective ways to solve the stability problem.In this work,we designed and synthesized two polymer donor materials PBDT and PDTBDT with different conjugation ranges,and demonstrated for the first time that extending the conjugation range of donor materials in all polymer solar cells can significantly improve device efficiency and stability.The experimental results of materials and devices show that PDTBDT with a larger conjugation range has stronger crystallinity and a more planar structure,which endows the active layer in its corresponding device with higher exciton dissociation probability,lower carrier recombination probability,more balanced charge transport properties and more favorable film morphology.As a result,the PDTBDT:PYF-T-o devices display an outstanding PCE of 13.38%,which is much higher than PBDT with smaller conjugation range based devices.Moreover,the PDTBDT:PYF-T-o device retains 0.86 of the initial PCE after over 500 h in the air atmosphere,exhibiting significantly improved stability.The improved stability is attributed to the enhanced moisture and air tolerance of active layer film thanks to the strong crystallinity of the donor material.These results demonstrate that the conjugation expansion strategy is one of the effective ways to obtain efficient and stable all-polymer organic solar cells. 展开更多
关键词 Polymer donor Conjugation expansion all-polymer organic solar cells Stability CRYSTALLINITY
原文传递
Polymerizing Ladder-type Heteroheptacene-Cored Small-Molecule Acceptors for Efficient All-Polymer Solar Cells
16
作者 Peng Wang Yu-Hang Zhu +5 位作者 Hong-Xin Tao Yun-Long Ma Dong-Dong Cai Qi-Sheng Tu Ruo-Chuan Liao Qing-Dong Zheng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2023年第7期1018-1026,共9页
One important subject in the field of all-polymer solar cells (all-PSCs) is the exploration of electron-deficient building blocks with optimized physicochemical properties to promote the performance of polymer accepto... One important subject in the field of all-polymer solar cells (all-PSCs) is the exploration of electron-deficient building blocks with optimized physicochemical properties to promote the performance of polymer acceptors. Here, two ladder-type heteroheptacene-containing small-molecule acceptors with branched 2-octyldodecyl or 2-hexyldecyl side-chains are synthesized and polymerized with the thiophene co-monomer to afford polymer acceptors (PW-OD and PW-HD) with strong near-infrared absorption. Experimental results reveal that the alkyl chain length has a large impact on the molecular packing behavior of the resulting polymers, which in turn affects their light-absorbing and charge transport properties, and thus the photovoltaic performance of the final devices. When blended with the polymer donor PM6, PW-HD-based all-PSCs deliver a higher power conversion efficiency (PCE) of 9.12% compared to the PCE of 6.47% for the PW-OD-based all-PSCs, mainly due to its more ordered inter-chain packing and more favorable blend morphology. This work provides a promising building block for the development of high-performance narrow-bandgap polymer acceptors and highlights the importance of side-chain substitution in optimizing the photovoltaic performance of polymer acceptors. 展开更多
关键词 all-polymer solar cells Polymer acceptors Ladder-type heteroheptacene Power conversion efficiency
原文传递
An asymmetric non-fused electron-deficient building block for low-cost polymer acceptor in all-polymer solar cells
17
作者 Haiqin Xiao Linfeng Yu +5 位作者 Zhiliang Zhang Haiyan Liang Yu Shi Xia Guo Maojie Zhang Yongfang Li 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第9期2626-2633,共8页
The development of polymerized fused-ring small molecule acceptors(FRA-PAs) has boosted the performance of all-polymer solar cells(all-PSCs).However,these FRA-PAs suffer from lengthy synthesis steps and high productio... The development of polymerized fused-ring small molecule acceptors(FRA-PAs) has boosted the performance of all-polymer solar cells(all-PSCs).However,these FRA-PAs suffer from lengthy synthesis steps and high production costs due to the high degree of synthetic complexity for fused-ring small molecule acceptors(FRAs).Furthermore,most FRA-PAs exhibit strong batch-to-batch variation,limiting further industrial applications.Herein,we designed and synthesized asymmetric non-fused electron-deficient building block TIC-Br with a simple structure(only three synthetic steps),showing a planar configuration,excellent electron affinity,and large dipole moment.A simple polymer acceptor PTIB was further developed by polymerization of TIC-Br and sensitized fluorinated-thienyl benzodithiophene(BDT-TF-Sn).PTIB exhibits a broad absorption from 300 to 800 nm,a suitable lowest unoccupied molecular orbital(LUMO) energy level of-3.86 e V,and moderate electron mobility(1.02×10^(-4)cm^(2)V^(-1)s^(-1)).When matched with PM6,the device achieved the best PCE of 10.11%with a high V_(OC) of 0.97 V,which is one of the highest among those reported all-PSCs.More importantly,PTIB exhibits a lower synthetic complexity index(SC=35.0%)and higher figure-of-merit values(FOM=29.0%) than all the reported high-performance PAs.The polymer also exhibits excellent batch-to-batch reproducibility and great potential for scale-up fabrication.This study indicates that TIC-Br is a promising building block for constructing low-cost polymer acceptors for large-scale applications in all-PSCs. 展开更多
关键词 non-fused electron-deficient building block low-cost polymer acceptors batch-to-batch reproducibility all-polymer solar cells
原文传递
11.2% Efficiency all-polymer solar cells with high open-circuit voltage 被引量:12
18
作者 Yuan Meng Jingnan Wu +8 位作者 Xia Guo Wenyan Su Lei Zhu Jin Fang Zhi-Guo Zhang Feng Liu Maojie Zhang Thomas P. Russell Yongfang Li 《Science China Chemistry》 SCIE EI CAS CSCD 2019年第7期845-850,共6页
Herein,we fabricated all-polymer solar cells(all-PSCs)based on a fluorinated wide-bandgap p-type conjugated polymer PM6 as the donor,and a narrow bandgap n-type conjugated polymer PZ1 as the acceptor.In addition to th... Herein,we fabricated all-polymer solar cells(all-PSCs)based on a fluorinated wide-bandgap p-type conjugated polymer PM6 as the donor,and a narrow bandgap n-type conjugated polymer PZ1 as the acceptor.In addition to the complementary absorption and matching energy levels,the optimized blend films possess high cystallinity,predominantly face-on stacking,and a suitable phase separated morphology.With this active layer,the devices exhibited a high Vocof 0.96 V,a superior Jscof 17.1 mA cm^-2,a fine fill factor(FF)of 68.2%,and thus an excellent power conversion efficiency(PCE)of 11.2%,which is the highest value reported to date for single-junction all-PSCs.Furthermore,the devices showed good storage stability.After 80 d of storage in the N2-filled glovebox,the PCE still remained over 90%of the original value.Large-area devices(1.1 cm^2)also demonstrated an outstanding performance with a PCE of 9.2%,among the highest values for the reported large-area all-PSCs.These results indicate that the PM6:PZ1 blend is a promising candidate for scale-up production of large area high-performance all-PSCs. 展开更多
关键词 all-polymer solar cells FLUORINE SUBSTITUTION power conversion EFFICIENCY wide bandgap POLYMER POLYMER ACCEPTOR
原文传递
Conjugated polymers containing B←N unit as electron acceptors for all-polymer solar cells 被引量:8
19
作者 Chuandong Dou Jun Liu Lixiang Wang 《Science China Chemistry》 SCIE EI CAS CSCD 2017年第4期450-459,共10页
Polymer electron acceptors are the key materials in all-polymer solar cells(all-PSCs).In this review,we focused on introducing the principle of boron-nitrogen coordination bond(B←N),and summarizing our recent researc... Polymer electron acceptors are the key materials in all-polymer solar cells(all-PSCs).In this review,we focused on introducing the principle of boron-nitrogen coordination bond(B←N),and summarizing our recent research on polymer electron acceptors containing B←N unit for efficient all-PSC devices.Two approaches have been reported to design polymer electron acceptors using B←N unit.One is to replace a C-C unit by a B←N unit in conjugated polymers to transform a polymer electron donor to a polymer electron acceptor.The other approach is to construct novel electron-deficient building block based on B←N unit for polymer electron acceptors.The polymer electron acceptors containing B←N unit showed tunable lowest unoccupied molecular orbital(LUMO) energy levels and exhibited excellent all-PSC device performance with power conversion efficiency of exceeding6%.These results indicate that organic boron chemistry is a new toolbox to develop functional polymer materials for optoelectronic device applications. 展开更多
关键词 organic photovoltaics all-polymer solar cells polymer acceptor BORON BN coordination bond
原文传递
High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor 被引量:6
20
作者 Qunping Fan Ruijie Ma +17 位作者 Tao Liu Jianwei Yu Yiqun Xiao Wenyan Su Guilong Cai Yuxiang Li Wenhong Peng Tao Guo Zhenghui Luo Huiliang Sun Lintao Hou Weiguo Zhu Xinhui Lu Feng Gao Ellen Moons Donghong Yu He Yan Ergang Wang 《Science China Chemistry》 SCIE EI CSCD 2021年第8期1380-1388,共9页
The non-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells(all-PSCs),despite a low ... The non-fully conjugated polymer as a new class of acceptor materials has shown some advantages over its small molecular counterpart when used in photoactive layers for all-polymer solar cells(all-PSCs),despite a low power conversion efficiency(PCE)caused by its narrow absorption spectra.Herein,a novel non-fully conjugated polymer acceptor PFY-2TS with a low bandgap of~1.40 eV was developed,via polymerizing a largeπ-fused small molecule acceptor(SMA)building block(namely YBO)with a non-conjugated thioalkyl linkage.Compared with its precursor YBO,PFY-2TS retains a similar low bandgap but a higher LUMO level.Moreover,compared with the structural analog of YBO-based fully conjugated polymer acceptor PFY-DTC,PFY-2TS shows a similar absorption spectrum and electron mobility,but significantly different molecular crystallinity and aggregation properties,which results in optimal blend morphology with a polymer donor PBDB-T and physical processes of the device in all-PSCs.As a result,PFY-2TS-based all-PSCs achieved a PCE of 12.31%with a small energy loss of 0.56 eV enabled by the reduced non-radiative energy loss(0.24 eV),which is better than that of 11.08%for the PFY-DTC-based ones.Our work clearly demonstrated that non-fully conjugated polymers as a new class of acceptor materials are very promising for the development of high-performance all-PSCs. 展开更多
关键词 all-polymer solar cells morphology non-fully conjugated polymer acceptors energy loss power conversion efficiency
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部