The exhaust gases, including SO_2,NH_3, H_2S, NO_2, NO, and CO, are principal air pollutants due to their severe harms to the ecological environment.Zeolites have been considered as good absorbent candidates to captur...The exhaust gases, including SO_2,NH_3, H_2S, NO_2, NO, and CO, are principal air pollutants due to their severe harms to the ecological environment.Zeolites have been considered as good absorbent candidates to capture the six exhaust gases.In this work, we performed grand canonical ensemble Monte Carlo(GCMC) simulations to examine the capability of 95 kinds of all-silica zeolites in the removal of the six toxic gases, and to predict the adsorption isotherms of the six gases on all the zeolites.The simulation results showed that, H_2S, NO, NO_2, CO and NH_3 are well-captured by zeolite structures with accessible surface area of 1600–1800 m^2·g^(-1) and pore diameter of 0.6–0.7 nm, such as AFY and PAU, while SO_2 is well-adsorbed by zeolites containing larger accessible surface area(1700–2700 m^2·g^(-1)) and pore diameter(0.7–1.4 nm) at room temperature and an atmospheric pressure.However, at saturated adsorption, zeolites RWY, IRR, JSR, TSC, and ITT are found to exhibit better abilities to capture these gases.Our study provides useful computational insights in choosing and designing zeolite structures with high performance to remove toxic gases for air purification, thereby facilitating the development and application of exhaust gas-processing technology in green industry.展开更多
A series of Mo-containing MFI zeolites with different Mo loadings(Mo-MFI-n,n represent the initial Si/Mo molar ratio)was hydrothermally synthesized by using tetrapropylammonium hydroxide as the template and Mo-EDTA co...A series of Mo-containing MFI zeolites with different Mo loadings(Mo-MFI-n,n represent the initial Si/Mo molar ratio)was hydrothermally synthesized by using tetrapropylammonium hydroxide as the template and Mo-EDTA complex as the Mo source.Various characterization results demonstrated that the use of the Mo-EDTA complex is beneficial for the incorporation of more Mo species into the MFI-type zeolites.The special complexing capability of EDTA^(2–)plays a critical role in adjusting the release rate of the Mo species to combine with the Si tetrahedron species during the zeolite growth process,thus leading to a uniform distribution of Mo in the MFI framework.In addition,a small portion of extra-framework Mo clusters may be distributed inside the channels or near the pore window of the zeolites.The catalytic properties of these Mo-containing MFI zeolites were evaluated for the epoxidation of cyclohexene with H_(2)O_(2)as the oxidant.The composition-optimized catalyst,Mo-MFI-50,efficiently converted cyclohexene to the corresponding epoxide with a relatively high conversion(93%)and epoxide selectivity(82%)at 75℃after 9 h of reaction.Moreover,the resultant Mo-containing MFI catalyst exhibited excellent structural stability and recoverability and was easily recycled by simple filtration without the need for calcination treatment.展开更多
The modification of pillared MFI zeolites was performed by nitridation of silica pillared MFI zeolite nanosheets under NH3 atmosphere with different time. The resultant zeolites were characterized by a complementary c...The modification of pillared MFI zeolites was performed by nitridation of silica pillared MFI zeolite nanosheets under NH3 atmosphere with different time. The resultant zeolites were characterized by a complementary combination of X-ray power diffraction(XRD), scanning electron microscopy(SEM),transmission electron microscopy(TEM), pyridine-IR spectroscopy and N2 adsorption–desorption isotherms. The analyses showed that the nitridation didn’t destroy the crystallinity and specific surface area of zeolites, and the acidity of zeolites can be tailored by tuning the time of nitridation, resulting in the different concentration ratios of Br?nsted-to-Lewis(B/L) acid sites. Moreover, the nitrided zeolites exhibited high selectivity to 2-benzyl-1,3,5-trimethylbenzene than parent silica pillared MFI zeolite nanosheets in benzylation of mesitylene with benzyl alcohol. A balance between Br?nsted acid sites and Lewis acid sites can inhibit the self-etherification of benzyl alcohol and enhance the selectivity of alkylated product. These experimental data implied that nitridation was an effective method to modulate the acidity of zeolites and the synergy between Br?nsted acid sites and Lewis acid sites was a decisive factor to determine the selectivity.展开更多
A clean and environmentally friendly new process for synthesis of zeolite with MFI structure was presented. This process through recycling of vented gas and mother liquor can reduce or avoid discharge of nitrogen-cont...A clean and environmentally friendly new process for synthesis of zeolite with MFI structure was presented. This process through recycling of vented gas and mother liquor can reduce or avoid discharge of nitrogen-containing offgas and waste liquid without affecting the physical and chemical properties of synthetic zeolite, leading to green synthesis of zeolite. This process can help to cut corners on production cost to achieve the sustainable development.展开更多
Identification of the catalyst characteristics correlating with the key performance parameters including selectivity and stability is key to the rational catalyst design. Herein we focused on the identification of pro...Identification of the catalyst characteristics correlating with the key performance parameters including selectivity and stability is key to the rational catalyst design. Herein we focused on the identification of property-performance relationships in the methanol-to-olefin(MTO) process by studying in detail the catalytic behaviour of MFI, MEL and their respective intergrowth zeolites. The detailed material characterization reveals that both the high production of propylene and butylenes and the large Me OH conversion capacity correlate with the enrichment of lattice Al sites in the channels of the pentasil structure as identified by 27 Al MAS NMR and 3-methylpentane cracking results. The lack of correlation between MTO performance and other catalyst characteristics, such as crystal size, presence of external Brønsted acid sites and Al pairing suggests their less pronounced role in defining the propylene selectivity. Our analysis reveals that catalyst deactivation is rather complex and is strongly affected by the enrichment of lattice Al in the intersections, the overall Al-content, and crystal size. The intergrowth of MFI and MEL phases accelerates the catalyst deactivation rate.展开更多
Catalytic cracking of naphtha is now a process of huge development potential to produce light olefins, which are important basic raw materials used in various industries, but current industrial catalysts like ZSM-5 ze...Catalytic cracking of naphtha is now a process of huge development potential to produce light olefins, which are important basic raw materials used in various industries, but current industrial catalysts like ZSM-5 zeolites suffer from low selectivity and high energy consumption. Here, Ti/Al-containing nanosize MFI-structure zeolites in-situly synthesized through one-pot method were applied to the catalytic cracking using n-hexane as the model reactant. The maximum mass yield of combined light olefins reaches 49.2% with 99% conversion at 600<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 1 atm. Multiple characterizations are used to identify the Ti-related active species and their effect on the performance. It was found that a higher proportion of LAS caused by Ti was beneficial to the activation of reactant, and the slightly increased amount of BAS leaded to more alkanes converting into light olefins. This understanding may open new opportunities for design and modification of catalytic cracking catalysts.展开更多
基金Supported by the National Natural Science Foundation of China(21406172)the Natural Science Foundation of Hubei Province,China(2016CFB388 and 2013CFA091)
文摘The exhaust gases, including SO_2,NH_3, H_2S, NO_2, NO, and CO, are principal air pollutants due to their severe harms to the ecological environment.Zeolites have been considered as good absorbent candidates to capture the six exhaust gases.In this work, we performed grand canonical ensemble Monte Carlo(GCMC) simulations to examine the capability of 95 kinds of all-silica zeolites in the removal of the six toxic gases, and to predict the adsorption isotherms of the six gases on all the zeolites.The simulation results showed that, H_2S, NO, NO_2, CO and NH_3 are well-captured by zeolite structures with accessible surface area of 1600–1800 m^2·g^(-1) and pore diameter of 0.6–0.7 nm, such as AFY and PAU, while SO_2 is well-adsorbed by zeolites containing larger accessible surface area(1700–2700 m^2·g^(-1)) and pore diameter(0.7–1.4 nm) at room temperature and an atmospheric pressure.However, at saturated adsorption, zeolites RWY, IRR, JSR, TSC, and ITT are found to exhibit better abilities to capture these gases.Our study provides useful computational insights in choosing and designing zeolite structures with high performance to remove toxic gases for air purification, thereby facilitating the development and application of exhaust gas-processing technology in green industry.
文摘A series of Mo-containing MFI zeolites with different Mo loadings(Mo-MFI-n,n represent the initial Si/Mo molar ratio)was hydrothermally synthesized by using tetrapropylammonium hydroxide as the template and Mo-EDTA complex as the Mo source.Various characterization results demonstrated that the use of the Mo-EDTA complex is beneficial for the incorporation of more Mo species into the MFI-type zeolites.The special complexing capability of EDTA^(2–)plays a critical role in adjusting the release rate of the Mo species to combine with the Si tetrahedron species during the zeolite growth process,thus leading to a uniform distribution of Mo in the MFI framework.In addition,a small portion of extra-framework Mo clusters may be distributed inside the channels or near the pore window of the zeolites.The catalytic properties of these Mo-containing MFI zeolites were evaluated for the epoxidation of cyclohexene with H_(2)O_(2)as the oxidant.The composition-optimized catalyst,Mo-MFI-50,efficiently converted cyclohexene to the corresponding epoxide with a relatively high conversion(93%)and epoxide selectivity(82%)at 75℃after 9 h of reaction.Moreover,the resultant Mo-containing MFI catalyst exhibited excellent structural stability and recoverability and was easily recycled by simple filtration without the need for calcination treatment.
基金Supported by the Science and Technology Program of Guangzhou,China(201804010172)National Natural Science Foundation of China(21808040,21706031,21276052,21776049)Science and Technology Planning Project of Guangdong Province,China(2012A090300006)
文摘The modification of pillared MFI zeolites was performed by nitridation of silica pillared MFI zeolite nanosheets under NH3 atmosphere with different time. The resultant zeolites were characterized by a complementary combination of X-ray power diffraction(XRD), scanning electron microscopy(SEM),transmission electron microscopy(TEM), pyridine-IR spectroscopy and N2 adsorption–desorption isotherms. The analyses showed that the nitridation didn’t destroy the crystallinity and specific surface area of zeolites, and the acidity of zeolites can be tailored by tuning the time of nitridation, resulting in the different concentration ratios of Br?nsted-to-Lewis(B/L) acid sites. Moreover, the nitrided zeolites exhibited high selectivity to 2-benzyl-1,3,5-trimethylbenzene than parent silica pillared MFI zeolite nanosheets in benzylation of mesitylene with benzyl alcohol. A balance between Br?nsted acid sites and Lewis acid sites can inhibit the self-etherification of benzyl alcohol and enhance the selectivity of alkylated product. These experimental data implied that nitridation was an effective method to modulate the acidity of zeolites and the synergy between Br?nsted acid sites and Lewis acid sites was a decisive factor to determine the selectivity.
文摘A clean and environmentally friendly new process for synthesis of zeolite with MFI structure was presented. This process through recycling of vented gas and mother liquor can reduce or avoid discharge of nitrogen-containing offgas and waste liquid without affecting the physical and chemical properties of synthetic zeolite, leading to green synthesis of zeolite. This process can help to cut corners on production cost to achieve the sustainable development.
基金supported by the BASF and the Advanced Research Center Chemical Building Blocks Consortium (ARC CBBC) for Funding under Project (2016.007.TUD)
文摘Identification of the catalyst characteristics correlating with the key performance parameters including selectivity and stability is key to the rational catalyst design. Herein we focused on the identification of property-performance relationships in the methanol-to-olefin(MTO) process by studying in detail the catalytic behaviour of MFI, MEL and their respective intergrowth zeolites. The detailed material characterization reveals that both the high production of propylene and butylenes and the large Me OH conversion capacity correlate with the enrichment of lattice Al sites in the channels of the pentasil structure as identified by 27 Al MAS NMR and 3-methylpentane cracking results. The lack of correlation between MTO performance and other catalyst characteristics, such as crystal size, presence of external Brønsted acid sites and Al pairing suggests their less pronounced role in defining the propylene selectivity. Our analysis reveals that catalyst deactivation is rather complex and is strongly affected by the enrichment of lattice Al in the intersections, the overall Al-content, and crystal size. The intergrowth of MFI and MEL phases accelerates the catalyst deactivation rate.
文摘Catalytic cracking of naphtha is now a process of huge development potential to produce light olefins, which are important basic raw materials used in various industries, but current industrial catalysts like ZSM-5 zeolites suffer from low selectivity and high energy consumption. Here, Ti/Al-containing nanosize MFI-structure zeolites in-situly synthesized through one-pot method were applied to the catalytic cracking using n-hexane as the model reactant. The maximum mass yield of combined light olefins reaches 49.2% with 99% conversion at 600<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">°</span>C and 1 atm. Multiple characterizations are used to identify the Ti-related active species and their effect on the performance. It was found that a higher proportion of LAS caused by Ti was beneficial to the activation of reactant, and the slightly increased amount of BAS leaded to more alkanes converting into light olefins. This understanding may open new opportunities for design and modification of catalytic cracking catalysts.