Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibi...Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.展开更多
Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward ...Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.展开更多
Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg elec...Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells.展开更多
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ...All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system.展开更多
A commentary on pressure-induced pre-lithiation towards Si anodes in allsolid-state Li-ion batteries(ASSLIBs)using sulfide electrolytes(SEs)is presented.First,feasible pre-lithiation technologies for Si anodes in SE-b...A commentary on pressure-induced pre-lithiation towards Si anodes in allsolid-state Li-ion batteries(ASSLIBs)using sulfide electrolytes(SEs)is presented.First,feasible pre-lithiation technologies for Si anodes in SE-based ASSLIBs especially the significant pressure-induced pre-lithiation strategies are briefly reviewed.Then,a recent achievement by Meng et al.in this field is elaborated in detail.Finally,the significance of Meng’s work is discussed.展开更多
Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,i...Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application.Herein,we report a liquid metal-coated lithium metal(LM@Li)anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte.The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2mA cm^(-2) and a significantly higher critical current density of 9.8 mAcm^(-2) at 25°C.In addition,a full battery assembled with a high-capacity composite LiNbO3@-LiNi_(0.7)Co_(0.2)Mn_(0.1)O_(2)(LNO@NCM721)cathode shows stable cycling performance.Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid-state batteries can be reinforced by using LM interlayers for interfacial modification.展开更多
Solid polymer electrolytes(SPEs)are highly promising for realizing high-capacity,low-cost,and safe Li metal batteries.However,the Li dendritic growth and side reactions between Li and SPEs also plague these systems.He...Solid polymer electrolytes(SPEs)are highly promising for realizing high-capacity,low-cost,and safe Li metal batteries.However,the Li dendritic growth and side reactions between Li and SPEs also plague these systems.Herein,a fluorinated lithium salt coating(FC)with organic-inorganic gradient and soft–rigid feature is introduced on Li surface as an artificial protective layer by the in-situ reaction between Li metal and fluorinated carboxylic acid.The FC layer can improve the interface stability and wettability between Li and SPEs,assist the transport of Li ions,and guide Li nucleation,contributing to a dendrite-free Li deposition and long-lifespan Li metal batteries.The symmetric cell with FC-Li anodes exhibits a high areal capacity of 1 mAh cm^(-2)at 0.5 mA cm^(-2),and an ultra-long lifespan of 2000 h at a current density of 0.1 mA cm^(-2).Moreover,the full cell paired with the LiFePO4 cathode exhibits improved cycling stability,remaining 83.7%capacity after 500 cycles at 1 C.When matching with the S cathode,the FC layer can prevent the shuttle effect,contributing to stable and high-capacity Li–S battery.This work provided a promising way for the construction of stable all-solid-state lithium metal batteries with prolonged lifespan.展开更多
Solid-state electrolytes(SSEs)play a pivotal role in advancing next-generation lithium metal battery technology.However,they commonly encounter substantial interfacial resistance and poor stability when interfacing wi...Solid-state electrolytes(SSEs)play a pivotal role in advancing next-generation lithium metal battery technology.However,they commonly encounter substantial interfacial resistance and poor stability when interfacing with lithium metal,hindering practical applications.Herein,we introduce a flexible metal-organic framework(MOF:NUS-6)-incorporated polymeric layer,denoted as NP,designed to protect the sodium superionic conductor(NASICON)-type Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)electrolyte from Li metal anodes.The NP matrix establishes a soft interface with the LATP surface,effectively reducing voids and gaps that may arise between the LATP electrolyte and Li metal.Moreover,the MOF component in NP enhances ionic conductivity,offers abundant Li^(+)transport sites,and provides hierarchical ion channels,ensuring a homogeneous Li^(+)flow and thus effectively inhibiting Li dendrite formation.Utilizing NP,we fabricate Li symmetrical cells cycled for over 1600 h at 0.2 mA cm^(-2)and all-solid-state LiINP-LATPI LiFePO_(4)batteries,achieving a remarkable 99.3%capacity retention after 200 cycles at 0.2 C.This work outlines a general strategy for designing long-lasting and stable solid-state Li metal batteries.展开更多
The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective...The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective additive 1-adaman-tanecarbonitrile,which con-tributes to the excellent per-formance of the poly(ethylene oxide)-based electrolytes.Owing to the strong interaction of the 1-Adamantanecarboni-trile to the polymer matrix and anions,the coordination of the Li^(+)-EO is weakened,and the binding effect of anions is strengthened,thereby improving the Li^(+)conductivity and the electrochemical stability.The diamond building block on the surface of the lithium anode can sup-press the growth of lithium dendrites.Importantly,the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface,which contributes to the interfacial stability(especially at high voltages)and protects the electrodes,enabling all-solid-state batteries to cycle at high voltages for long periods of time.Therefore,the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h.1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li all-solid-state batteries achieved stable cycles for 1000 times,with capacity retention rates reaching 85%and 80%,respectively.展开更多
All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to th...All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to the development of FIBs lies in room-temperature electrolytes with high ionic conductivity.β-KSbF_(4) is a kind of promising solid-state electrolyte for FIBs owing to its rational ionic conductivity and relatively wide electrochemical stability window at room temperature.However,the previous synthesis routes ofβ-KSbF_(4) required the use of highly toxic hydrofluoric acid and the ionic conductivity of as-prepared product needs to be further improved.Herein,the β-KSbF_(4) sample with an ionic conductivity of 1.04×10^(-4)s cm^(-1)(30°C)is synthesized through the simple solid-state route.In order to account for the high ionic conductivity of the as-synthesizedβ-KSbF_(4),X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive X-ray spectroscopy(EDS)are used to characterize the physic-ochemical properties.The results show that the as-synthesizedβ-KSbF_(4) exhibits higher carrier concentra-tion of 1.0×10^(-6)S cm-Hz^(-1)K and hopping frequency of 1.31×10^(6)Hz at 30°C due to the formation of the fluorine vacancies.Meanwhile,the hopping frequency shows the same trend as the changes of ionic conductivity with the changes of temperature,while the carrier concentration is found to be almost con-stant.The two different trends indicate the hopping frequency is mainly responsible for the ionic conduc-tion behavior withinβ-KSbF_(4).Furthermore,the all-solid-state FIBs,in which Ag and Pb+PbF_(2) are adopted as cathode and anode,andβ-KSbF_(4) as fluoride ion conductor,are capable of reversible charge and discharge.The assembled FIBs show a discharge capacity of 108.4 mA h g^(-1) at 1st cycle and 74.2 mA h g^(-1) at 50th cycle.Based on an examination of the capacity decay mechanism,it has been found that deterioration of the electrolyte/electrode interface is an important reason for hindering the commer-cial application of FIBs.Hence,the in-depth comprehension of the ion transport characteristics inβ-KSbF_(4) and the interpretation of the capacity fading mechanism will be conducive to promoting development of high-performanceFIBs.展开更多
High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incom...High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically.展开更多
Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical vers...Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.展开更多
Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and ...Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.展开更多
The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the m...The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the melting point,dominantly limits their applications in solid-state batteries(SSBs).Although the inorganic filler such as CeO_(2)nanoparticle content of composite solid polymer electrolytes(CSPEs)can significantly reduce the enormous charge transfer impedance at the Li metal/SPEs interface,we found that the required content of CeO_(2)nanoparticles in SPEs varies for achieving a decent interfacial charge transfer impedance and the bulk ionic conductivity in CSPEs.In this regard,a sandwich-type composited solid polymer electrolyte with a 10%CeO_(2)CSPEs interlayer sandwiched between two 50%CeO_(2)CSPEs thin layers(sandwiched CSPEs)is constructed to simultaneously achieve low charge transfer impedance and superior ionic conductivity at 30℃.The sandwiched CSPEs allow for stable cycling of Li plating and stripping for 1000 h with 129 mV polarized voltage at 0.1 mA cm^(-2)and 30℃.In addition,the LiFePO_(4)/Sandwiched CSPEs/Li cell also exhibits exceptional cycle performance at 30℃and even elevated120℃without short circuits.Constructing multi-layered CSPEs with optimized contents of the inorganic fillers can be an efficient method for developing all solid-state PEO-based batteries with high performance at a wide range of temperatures.展开更多
Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe...Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.展开更多
All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,s...All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,sulfide solid electrolyte(SSE)Li_(6)PS_(5)Cl has garnered significant attention.However,its application is limited by its poor cyclability and low critical current density(CCD).In this study,we introduce a novel approach to enhance the performance of Li_(6)PS_(5)Cl by doping it with fluorine,using lithium fluoride nanoparticles(LiFs)as the doping precursor.The F-doped electrolyte Li_(6)PS_(5)Cl-0.2LiF(nano)shows a doubled CCD,from 0.5 to 1.0 mA/cm^(2) without compromising the ionic conductivity;in fact,conductivity is enhanced from 2.82 to 3.30 mS/cm,contrary to the typical performance decline seen in conventionally doped Li_(6)PS_(5)Cl electrolytes.In symmetric Li|SSE|Li cells,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is 4 times longer than that of Li_(6)PS_(5)Cl,achieving 1500 h vs.371 h under a charging/discharging current density of 0.2 mA/cm^(2).In Li|SSE|LiNbO_(3)@NCM721 full cells,which are tested under a cycling rate of 0.1 C at 30℃,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is four times that of Li_(6)PS_(5)Cl,reaching 100 cycles vs.26 cycles.Therefore,the doping of nano-LiF off ers a promising approach to developing high-performance Li_(6)PS_(5)Cl for ASSLMBs.展开更多
The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital...The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.展开更多
Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),a...Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),all-state-state lithium metal batteries(ASLMBs)have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety.However,its applications are still challenged by plenty of technical and scientific issues.In this contribution,the co-sintering temperature at 500℃is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM).On the other hand,it tends to form weaker grain boundary(GB)inside polycrystalline LLZO at inadequate sintering temperature for LLZO,which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE.Therefore,increasing the strength of GB,refining the grain to 0.4μm,and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB.Moreover,the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety.展开更多
Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state el...Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs.展开更多
All-solid-state lithium metal batteries(ASSLMBs)are considered as one of the ultimate goals for the development of energy storage systems due to their high energy density and high safety.However,the mismatching of int...All-solid-state lithium metal batteries(ASSLMBs)are considered as one of the ultimate goals for the development of energy storage systems due to their high energy density and high safety.However,the mismatching of interface transport kinetics as well as interfacial instability induces the growth of lithium dendrite and thus,leads to severe degradation of battery electrochemical performances.Herein,an integrated interface configuration(IIC)consisting of in-situ generated Li I interphase and Li-Ag alloy anode is proposed through in-situ interface chemistry.The IIC is capable of not only regulating charge transport kinetics but also synchronously stabilizing the lithium/electrolyte interface,thereby achieving uniform lithium platting.Therefore,Li||Li symmetric cells with IIC achieve a critical current density of up to 1.6 mA cm^(-2)and achieve stable cycling over 1600 hours at a high current density of 0.5 mA cm^(-2).Moreover,a high discharge capacity of 140.1 mA h g-1at 0.1 C is also obtained for the Li(Ni_(0.6)Co_(0.2)Mn_(0.2))O_(2)(NCM622)full battery with a capacity retention of 65.6%after 300 cycles.This work provides an effective method to synergistically regulate the interface transport kinetics and inhibit lithium dendrite growth for high-performance ASSLMBs.展开更多
基金supported by National Natural Science Foundation of China(Grant No.U1930113),ChinaNational Natural Science Foundation of China(52072036)
文摘Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃.
基金funded by the Ministry of Science and ICT through the National Research Foundation of Korea(202300262366)the Basic Research Lab(RS-2023-00219710)the Ministry of Commerce,Industry,and Energy(20025720)of Korea.
文摘Solid-state batteries are commonly acknowledged as the forthcoming evolution in energy storage technologies.Recent development progress for these rechargeable batteries has notably accelerated their trajectory toward achieving commercial feasibility.In particular,all-solid-state lithium-sulfur batteries(ASSLSBs)that rely on lithium-sulfur reversible redox processes exhibit immense potential as an energy storage system,surpassing conventional lithium-ion batteries.This can be attributed predominantly to their exceptional energy density,extended operational lifespan,and heightened safety attributes.Despite these advantages,the adoption of ASSLSBs in the commercial sector has been sluggish.To expedite research and development in this particular area,this article provides a thorough review of the current state of ASSLSBs.We delve into an in-depth analysis of the rationale behind transitioning to ASSLSBs,explore the fundamental scientific principles involved,and provide a comprehensive evaluation of the main challenges faced by ASSLSBs.We suggest that future research in this field should prioritize plummeting the presence of inactive substances,adopting electrodes with optimum performance,minimizing interfacial resistance,and designing a scalable fabrication approach to facilitate the commercialization of ASSLSBs.
基金the support of the National Natural Science Foundation of China(51971146,51971147,52171218 and 52271222)the Shanghai Municipal Science and Technology Commission(21010503100)+3 种基金the Major Program for the Scientific Research Innovation Plan of Shanghai Education Commission(2019-01-07-00-07E00015)the Shanghai Outstanding Academic Leaders Plan,the Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology,201017-K)the Shanghai Rising-Star Program(20QA1407100)the General Program of Natural Science Foundation of Shanghai(20ZR1438400)
文摘Searching for novel solid electrolytes is of great importance and challenge for all-solid-state Mg batteries.In this work,we develop an amorphous Mg borohydride ammoniate,Mg(BH_(4))_(2)·2NH_(3),as a solid Mg electrolyte that prepared by a NH_(3)redistribution between 3D framework-γ-Mg(BH_(4))_(2)and Mg(BH_(4))_(2)·6NH_(3).Amorphous Mg(BH_(4))_(2)·2NH_(3)exhibits a high Mg-ion conductivity of 5×10^(-4)S cm^(-1)at 75℃,which is attributed to the fast migration of abundant Mg vacancies according to the theoretical calculations.Moreover,amorphous Mg(BH_(4))_(2)·2NH_(3)shows an apparent electrochemical stability window of 0-1.4 V with the help of in-situ formed interphases,which can prevent further side reactions without hindering the Mg-ion transfer.Based on the above superiorities,amorphous Mg(BH_(4))_(2)·2NH_(3)enables the stable cycling of all-solid-state Mg cells,as the critical current density reaches 3.2 mA cm^(-2)for Mg symmetrical cells and the reversible specific capacity reaches 141 mAh g^(-1)with a coulombic efficiency of 91.7%(first cycle)for Mg||TiS_(2)cells.
基金supported by the Ensemble Grant for Early Career Researchers 2022 and the 2023 Ensemble Continuation Grant of Tohoku University,the Hirose Foundation,the Iwatani Naoji Foundation,and the AIMR Fusion Research Grantsupported by JSPS KAKENHI Nos.JP23K13599,JP23K13703,JP22H01803,and JP18H05513+2 种基金the Center for Computational Materials Science,Institute for Materials Research,Tohoku University for the use of MASAMUNEIMR(Nos.202212-SCKXX0204 and 202208-SCKXX-0212)the Institute for Solid State Physics(ISSP)at the University of Tokyo for the use of their supercomputersthe China Scholarship Council(CSC)fund to pursue studies in Japan.
文摘All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.52072136,52272201,52172229,51972257)Yanchang Petroleum-WHUT Joint Program(yc-whlg-2022ky-05)Fundamental Research Funds for the Central Universities(104972024RSCrc0006)for financial support.
文摘A commentary on pressure-induced pre-lithiation towards Si anodes in allsolid-state Li-ion batteries(ASSLIBs)using sulfide electrolytes(SEs)is presented.First,feasible pre-lithiation technologies for Si anodes in SE-based ASSLIBs especially the significant pressure-induced pre-lithiation strategies are briefly reviewed.Then,a recent achievement by Meng et al.in this field is elaborated in detail.Finally,the significance of Meng’s work is discussed.
基金financially supported by the Shenzhen Science and Technology Program (Grant No.KQTD20200820113045083,ZDSYS20190902093220279,and JCYJ20220818102403007)the National Natural Science Foundation of China (52201257)the Shenzhen Research Fund for Returned Scholars (DD11409017).
文摘Lithium metal batteries with inorganic solid-state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high-energy content and safety.Nonetheless,inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application.Herein,we report a liquid metal-coated lithium metal(LM@Li)anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte.The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2mA cm^(-2) and a significantly higher critical current density of 9.8 mAcm^(-2) at 25°C.In addition,a full battery assembled with a high-capacity composite LiNbO3@-LiNi_(0.7)Co_(0.2)Mn_(0.1)O_(2)(LNO@NCM721)cathode shows stable cycling performance.Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid-state batteries can be reinforced by using LM interlayers for interfacial modification.
基金support by the National Natural Science Foundation of China(grant no.51772206).
文摘Solid polymer electrolytes(SPEs)are highly promising for realizing high-capacity,low-cost,and safe Li metal batteries.However,the Li dendritic growth and side reactions between Li and SPEs also plague these systems.Herein,a fluorinated lithium salt coating(FC)with organic-inorganic gradient and soft–rigid feature is introduced on Li surface as an artificial protective layer by the in-situ reaction between Li metal and fluorinated carboxylic acid.The FC layer can improve the interface stability and wettability between Li and SPEs,assist the transport of Li ions,and guide Li nucleation,contributing to a dendrite-free Li deposition and long-lifespan Li metal batteries.The symmetric cell with FC-Li anodes exhibits a high areal capacity of 1 mAh cm^(-2)at 0.5 mA cm^(-2),and an ultra-long lifespan of 2000 h at a current density of 0.1 mA cm^(-2).Moreover,the full cell paired with the LiFePO4 cathode exhibits improved cycling stability,remaining 83.7%capacity after 500 cycles at 1 C.When matching with the S cathode,the FC layer can prevent the shuttle effect,contributing to stable and high-capacity Li–S battery.This work provided a promising way for the construction of stable all-solid-state lithium metal batteries with prolonged lifespan.
基金supported by the National Key R&D Program of China(2022YFB2404700)the Natural Science Foundation of China(22109186)+1 种基金the Guangdong Innovative and Entrepreneurial Research Team Program(2021ZT09L227)supported by the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(22hytd01)。
文摘Solid-state electrolytes(SSEs)play a pivotal role in advancing next-generation lithium metal battery technology.However,they commonly encounter substantial interfacial resistance and poor stability when interfacing with lithium metal,hindering practical applications.Herein,we introduce a flexible metal-organic framework(MOF:NUS-6)-incorporated polymeric layer,denoted as NP,designed to protect the sodium superionic conductor(NASICON)-type Li_(1.3)Al_(0.3)Ti_(1.7)(PO_(4))_(3)(LATP)electrolyte from Li metal anodes.The NP matrix establishes a soft interface with the LATP surface,effectively reducing voids and gaps that may arise between the LATP electrolyte and Li metal.Moreover,the MOF component in NP enhances ionic conductivity,offers abundant Li^(+)transport sites,and provides hierarchical ion channels,ensuring a homogeneous Li^(+)flow and thus effectively inhibiting Li dendrite formation.Utilizing NP,we fabricate Li symmetrical cells cycled for over 1600 h at 0.2 mA cm^(-2)and all-solid-state LiINP-LATPI LiFePO_(4)batteries,achieving a remarkable 99.3%capacity retention after 200 cycles at 0.2 C.This work outlines a general strategy for designing long-lasting and stable solid-state Li metal batteries.
基金supported by National Natural Science Foundation of China(Grant No.22209012).
文摘The interfacial instability of the poly(ethylene oxide)(PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batter-ies.In this work,we have shown an effective additive 1-adaman-tanecarbonitrile,which con-tributes to the excellent per-formance of the poly(ethylene oxide)-based electrolytes.Owing to the strong interaction of the 1-Adamantanecarboni-trile to the polymer matrix and anions,the coordination of the Li^(+)-EO is weakened,and the binding effect of anions is strengthened,thereby improving the Li^(+)conductivity and the electrochemical stability.The diamond building block on the surface of the lithium anode can sup-press the growth of lithium dendrites.Importantly,the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface,which contributes to the interfacial stability(especially at high voltages)and protects the electrodes,enabling all-solid-state batteries to cycle at high voltages for long periods of time.Therefore,the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h.1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li all-solid-state batteries achieved stable cycles for 1000 times,with capacity retention rates reaching 85%and 80%,respectively.
基金supported by the National Natural Science Foundation of China(No.U19A2018)the China National University Student Innovation and Entrepreneurship Training Program(S202310530059)。
文摘All-solid-state fluoride ion batteries(FIBs)have been recently considered as a post-lithium-ion battery system due to their high safety and high energy density.Just like all solid-state lithium batteries,the key to the development of FIBs lies in room-temperature electrolytes with high ionic conductivity.β-KSbF_(4) is a kind of promising solid-state electrolyte for FIBs owing to its rational ionic conductivity and relatively wide electrochemical stability window at room temperature.However,the previous synthesis routes ofβ-KSbF_(4) required the use of highly toxic hydrofluoric acid and the ionic conductivity of as-prepared product needs to be further improved.Herein,the β-KSbF_(4) sample with an ionic conductivity of 1.04×10^(-4)s cm^(-1)(30°C)is synthesized through the simple solid-state route.In order to account for the high ionic conductivity of the as-synthesizedβ-KSbF_(4),X-ray diffraction(XRD),scanning electron microscopy(SEM),and energy dispersive X-ray spectroscopy(EDS)are used to characterize the physic-ochemical properties.The results show that the as-synthesizedβ-KSbF_(4) exhibits higher carrier concentra-tion of 1.0×10^(-6)S cm-Hz^(-1)K and hopping frequency of 1.31×10^(6)Hz at 30°C due to the formation of the fluorine vacancies.Meanwhile,the hopping frequency shows the same trend as the changes of ionic conductivity with the changes of temperature,while the carrier concentration is found to be almost con-stant.The two different trends indicate the hopping frequency is mainly responsible for the ionic conduc-tion behavior withinβ-KSbF_(4).Furthermore,the all-solid-state FIBs,in which Ag and Pb+PbF_(2) are adopted as cathode and anode,andβ-KSbF_(4) as fluoride ion conductor,are capable of reversible charge and discharge.The assembled FIBs show a discharge capacity of 108.4 mA h g^(-1) at 1st cycle and 74.2 mA h g^(-1) at 50th cycle.Based on an examination of the capacity decay mechanism,it has been found that deterioration of the electrolyte/electrode interface is an important reason for hindering the commer-cial application of FIBs.Hence,the in-depth comprehension of the ion transport characteristics inβ-KSbF_(4) and the interpretation of the capacity fading mechanism will be conducive to promoting development of high-performanceFIBs.
基金supported by the National Natural Science Foundation of China(Nos.21905041,22279014)Jilin Province Major Science and Technology special project(Nos.20220301004GX+4 种基金20220301005GX)R&D Program of Power Batteries with Low Temperature and High Energy,Science and Technology Bureau of Changchun(No.19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal UniversitySpecial foundation of Jilin Province Industrial Technology Research and Development(No.2019C042)the Fundamental Research Funds for the Central Universities(No.2412020FZ008)
文摘High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically.
基金supported by the Basic Science Research Program (No.RS-2024-00344021) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planningthe financial support from the National Natural Science Foundation of China (52103277)+2 种基金the Program for Science & Technology Innovation Talents in Universities of Henan Province (23HASTIT015)Natural Science Foundation of Henan Province (242300421073)supported by the Technology Innovation Program (20010960) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea)
文摘Single-ion conductors based on covalent organic frameworks(COFs)have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility.However,the sluggish Li+conduction has hindered their practical applications.Here,we present a class of solvent-free COF single-ion conductors(Li-COF@P)based on weak ion-dipole interaction as opposed to traditional strong ion-ion interaction.The ion(Li+from the COF)-dipole(oxygen from poly(ethylene glycol)diacrylate embedded in the COF pores)interaction in the Li-COF@P promotes ion dissociation and Li+migration via directional ionic channels.Driven by this single-ion transport behavior,the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance(88.3%after 2000 cycles)in organic batteries(Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone(Me2BBQ)cathode)under ambient operating conditions,highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.
基金This work is supported by National Natural Science Founda-tion of China(U2004199)National Key Research and Devel-opment Program of China(2018YFD0200606)+1 种基金China Postdoctoral Science Foundation(2021T140615),Natural Sci-enceFoundationofHenanProvince(212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Solid polymer electrolyte(SPE) shows great potential for all-solid-state batteries because of the inherent safety and flexibility;however, the unfavourable Li+deposition and large thickness hamper its development and application. Herein, a laminar MXene functional layer-thin SPE layer-cathode integration(MXene-PEO-LFP) is designed and fabricated. The MXene functional layer formed by stacking rigid MXene nanosheets imparts higher compressive strength relative to PEO electrolyte layer. And the abundant negatively-charged groups on MXene functional layer effectively repel anions and attract cations to adjust the charge distribution behavior at electrolyte–anode interface. Furthermore,the functional layer with rich lithiophilic groups and outstanding electronic conductivity results in low Li nucleation overpotential and nucleation energy barrier. In consequence, the cell assembled with MXene-PEO-LFP, where the PEO electrolyte layer is only 12 μm, much thinner than most solid electrolytes, exhibits uniform, dendrite-free Li+deposition and excellent cycling stability. High capacity(142.8 mAh g-1), stable operation of 140 cycles(capacity decay per cycle, 0.065%), and low polarization potential(0.5 C) are obtained in this Li|MXene-PEO-LFP cell,which is superior to most PEO-based electrolytes under identical condition. This integrated design may provide a strategy for the large-scale application of thin polymer electrolytes in all-solid-state battery.
基金supported by the National Key R&D Program of China(2021YFB2400400)the National Natural Science Foundation of China(Grant No.22379120,22179085)+5 种基金the Key Research and Development Plan of Shanxi Province(China,Grant No.2018ZDXM-GY-135,2021JLM-36)the National Natural Science Foundation of China(Grant No.22108218)the“Young Talent Support Plan”of Xi’an Jiaotong University(71211201010723)the Qinchuangyuan Innovative Talent Project(QCYRCXM-2022-137)the“Young Talent Support Plan”of Xi’an Jiaotong University(HG6J003)the“1000-Plan program”of Shaanxi Province。
文摘The insurmountable charge transfer impedance at the Li metal/solid polymer electrolytes(SPEs)interface at room temperature as well as the ascending risk of short circuits at the operating temperature higher than the melting point,dominantly limits their applications in solid-state batteries(SSBs).Although the inorganic filler such as CeO_(2)nanoparticle content of composite solid polymer electrolytes(CSPEs)can significantly reduce the enormous charge transfer impedance at the Li metal/SPEs interface,we found that the required content of CeO_(2)nanoparticles in SPEs varies for achieving a decent interfacial charge transfer impedance and the bulk ionic conductivity in CSPEs.In this regard,a sandwich-type composited solid polymer electrolyte with a 10%CeO_(2)CSPEs interlayer sandwiched between two 50%CeO_(2)CSPEs thin layers(sandwiched CSPEs)is constructed to simultaneously achieve low charge transfer impedance and superior ionic conductivity at 30℃.The sandwiched CSPEs allow for stable cycling of Li plating and stripping for 1000 h with 129 mV polarized voltage at 0.1 mA cm^(-2)and 30℃.In addition,the LiFePO_(4)/Sandwiched CSPEs/Li cell also exhibits exceptional cycle performance at 30℃and even elevated120℃without short circuits.Constructing multi-layered CSPEs with optimized contents of the inorganic fillers can be an efficient method for developing all solid-state PEO-based batteries with high performance at a wide range of temperatures.
基金National Key R&D Program of China(2021YFA0716304)Shanghai Science and Technology Programs(22511100300,23DZ2201500)。
文摘Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.
基金supported by the National Key Research and Development Program of China(No.2018YFE0111600)the Haihe Laboratory of Sustainable Chemical Transformations(No.CYZC202307)for financial support。
文摘All-solid-state lithium-metal batteries(ASSLMBs)are widely considered as the ultimately advanced lithium batteries owing to their improved energy density and enhanced safety features.Among various solid electrolytes,sulfide solid electrolyte(SSE)Li_(6)PS_(5)Cl has garnered significant attention.However,its application is limited by its poor cyclability and low critical current density(CCD).In this study,we introduce a novel approach to enhance the performance of Li_(6)PS_(5)Cl by doping it with fluorine,using lithium fluoride nanoparticles(LiFs)as the doping precursor.The F-doped electrolyte Li_(6)PS_(5)Cl-0.2LiF(nano)shows a doubled CCD,from 0.5 to 1.0 mA/cm^(2) without compromising the ionic conductivity;in fact,conductivity is enhanced from 2.82 to 3.30 mS/cm,contrary to the typical performance decline seen in conventionally doped Li_(6)PS_(5)Cl electrolytes.In symmetric Li|SSE|Li cells,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is 4 times longer than that of Li_(6)PS_(5)Cl,achieving 1500 h vs.371 h under a charging/discharging current density of 0.2 mA/cm^(2).In Li|SSE|LiNbO_(3)@NCM721 full cells,which are tested under a cycling rate of 0.1 C at 30℃,the lifetime of Li_(6)PS_(5)Cl-0.2LiF(nano)is four times that of Li_(6)PS_(5)Cl,reaching 100 cycles vs.26 cycles.Therefore,the doping of nano-LiF off ers a promising approach to developing high-performance Li_(6)PS_(5)Cl for ASSLMBs.
基金This research was supported by the European Union’s‘Shift2Rail’through No.826255 for the project IN2TRACK2:Research into enhanced track and switch and crossing system 2
文摘The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.
基金the National Natural Science Foundation of China(12102328)for supporting this work。
文摘Owing to the utilization of lithium metal as anode with the ultrahigh theoretical capacity density of 3860 mA h g^(-1)and oxide-based ceramic solid-state electrolytes(SE),e.g.,garnet-type Li7La_(3)Zr_(2)O_(12)(LLZO),all-state-state lithium metal batteries(ASLMBs)have been widely accepted as the promising alternatives for providing the satisfactory energy density and safety.However,its applications are still challenged by plenty of technical and scientific issues.In this contribution,the co-sintering temperature at 500℃is proved as a compromise method to fabricate the composite cathode with structural integrity and declined capacity fading of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM).On the other hand,it tends to form weaker grain boundary(GB)inside polycrystalline LLZO at inadequate sintering temperature for LLZO,which can induce the intergranular failure of SE during the growth of Li filament inside the unavoidable defect on the interface of SE.Therefore,increasing the strength of GB,refining the grain to 0.4μm,and precluding the interfacial defect are suggested to postpone the electro-chemo-mechanical failure of SE with weak GB.Moreover,the advanced sintering techniques to lower the co-sintering temperature for both NCM-LLZO composite cathode and LLZO SE can be posted out to realize the viability of state-of-the-art ASLMBs with higher energy density as well as the guaranteed safety.
基金the National Natural Science Foundation of China(Nos.22279070,U21A20170 and 22175106)the Ministry of Science and Technology of China(Nos.2019YFA0705703,2021YFB2501900 and 2019YFE0100200)+1 种基金the Tsinghua University Initiative Scientific Research Program(20223080001)the Tsinghua-Foshan Innovation Special Fund(2021THFS0216)。
文摘Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs.
基金supported by the Beijing Natural Science Foundation(L223009)the National Natural Science Foundation of China(22075029)+1 种基金the National Key Research and Development Program of China(2021YFB2500300)the Key Research and Development(R&D)Projects of Shanxi Province(2021020660301013)。
文摘All-solid-state lithium metal batteries(ASSLMBs)are considered as one of the ultimate goals for the development of energy storage systems due to their high energy density and high safety.However,the mismatching of interface transport kinetics as well as interfacial instability induces the growth of lithium dendrite and thus,leads to severe degradation of battery electrochemical performances.Herein,an integrated interface configuration(IIC)consisting of in-situ generated Li I interphase and Li-Ag alloy anode is proposed through in-situ interface chemistry.The IIC is capable of not only regulating charge transport kinetics but also synchronously stabilizing the lithium/electrolyte interface,thereby achieving uniform lithium platting.Therefore,Li||Li symmetric cells with IIC achieve a critical current density of up to 1.6 mA cm^(-2)and achieve stable cycling over 1600 hours at a high current density of 0.5 mA cm^(-2).Moreover,a high discharge capacity of 140.1 mA h g-1at 0.1 C is also obtained for the Li(Ni_(0.6)Co_(0.2)Mn_(0.2))O_(2)(NCM622)full battery with a capacity retention of 65.6%after 300 cycles.This work provides an effective method to synergistically regulate the interface transport kinetics and inhibit lithium dendrite growth for high-performance ASSLMBs.