In this paper, on-road trajectory planning is solved by introducing intelligent computing budget allocation(ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential evolut...In this paper, on-road trajectory planning is solved by introducing intelligent computing budget allocation(ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential evolution(OODE). The proposed algorithm is named IOODE with ‘I' representing ICBA. OODE plans the trajectory in two parts: trajectory curve and acceleration profile. The best trajectory curve is picked from a set of candidate curves, where each curve is evaluated by solving a subproblem with the differential evolution(DE) algorithm. The more iterations DE performs, the more accurate the evaluation will become. Thus, we intelligently allocate the iterations to individual curves so as to reduce the total number of iterations performed. Meanwhile, the selected best curve is ensured to be one of the truly top curves with a high enough probability. Simulation results show that IOODE is 20% faster than OODE while maintaining the same performance in terms of solution quality. The computing budget allocation framework presented in this paper can also be used to enhance the efficiency of other candidate-curve-based planning methods.展开更多
基金supported by the National Natural Science Foundation of China(No.61273039)
文摘In this paper, on-road trajectory planning is solved by introducing intelligent computing budget allocation(ICBA) into a candidate-curve-based planning algorithm, namely, ordinal-optimization-based differential evolution(OODE). The proposed algorithm is named IOODE with ‘I' representing ICBA. OODE plans the trajectory in two parts: trajectory curve and acceleration profile. The best trajectory curve is picked from a set of candidate curves, where each curve is evaluated by solving a subproblem with the differential evolution(DE) algorithm. The more iterations DE performs, the more accurate the evaluation will become. Thus, we intelligently allocate the iterations to individual curves so as to reduce the total number of iterations performed. Meanwhile, the selected best curve is ensured to be one of the truly top curves with a high enough probability. Simulation results show that IOODE is 20% faster than OODE while maintaining the same performance in terms of solution quality. The computing budget allocation framework presented in this paper can also be used to enhance the efficiency of other candidate-curve-based planning methods.