A study was conducted in the forest area of Chittagong (South) Forest Division, Chittagong, Bangladesh for developing al- lometric models to estimate biomass organic carbon stock in the forest vegetation. Allometric...A study was conducted in the forest area of Chittagong (South) Forest Division, Chittagong, Bangladesh for developing al- lometric models to estimate biomass organic carbon stock in the forest vegetation. Allometric models were tested separately for trees (divided into two DBH classes), shrubs, herbs and grasses. Model using basal area alone was found to be the best predictor of biomass organic carbon stock in trees because of high coefficient of determination (r^2 is 0.73697 and 0.87703 for 〉 5 cm to ≤ 15 cm and 〉 15 cm DBH (diameter at breast height) rang, respectively) and significance of regression (P is 0.000 for each DBH range) coefficients for both DBH range. The other models using height alone; DBH alone; height and DBH together; height, DBH and wood density; with liner and logarithmic relations produced relatively poor coefficient of determination. The allometric models for dominant 20 tree species were also developed separately and equation using basal area produced higher value of determination of coefficient. Allometric model using total biomass alone for shrubs, herbs and grasses produced higher value of determination of coefficient and significance of regression coefficient (r^2 is 0.87948 and 0.87325 for shrubs, herbs and grasses, respectively and P is 0.000 for each). The estimation of biomass organic carbon is a complicated and time consuming research. The allometric models developed in the present study can be utilized for future estimation of organic carbon stock in forest vegetation in Bangladesh as well as other tropical countries of the world.展开更多
The aboveground biomass(AGB)of shrubs and small trees is the main component for the productivity and carbon storage of understory vegetation in subtropical secondary forests.However,few allometric models exist to accu...The aboveground biomass(AGB)of shrubs and small trees is the main component for the productivity and carbon storage of understory vegetation in subtropical secondary forests.However,few allometric models exist to accurately evaluate understory biomass.To estimate the AGB of five common shrub(diameter at base<5 cm,<5 m high)and one small tree species(<8 m high,trees’s seedling),206 individuals were harvested and species-specific and multi-species allometric models developed based on four predictors,height(H),stem diameter(D),crown area(Ca),and wood density(ρ).As expected,the six species possessed greater biomass in their stems compared with branches,with the lowest biomass in the leaves.Species-specific allometric models that employed stem diameter and the combined variables of D~2H andρDH as predictors accurately estimated the components and total AGB,with R^(2) values from 0.602 and 0.971.A multi-species shrub allometric model revealed that wood density×diameter×height(ρDH)was the best predictor,with R^(2) values ranging from between 0.81 and 0.89 for the components and total AGB,respectively.These results indicated that height(H)and diameter(D)were effective predictors for the models to estimate the AGB of the six species,and the introduction of wood density(ρ)improved their accuracy.The optimal models selected in this study could be applied to estimate the biomass of shrubs and small trees in subtropical regions.展开更多
This study developed allometric models to estimate aboveground biomass and carbon of Prosopis africana and Faidherbia albida. The destructive method was used with a sample of 20 trees per species for the two parkland ...This study developed allometric models to estimate aboveground biomass and carbon of Prosopis africana and Faidherbia albida. The destructive method was used with a sample of 20 trees per species for the two parkland sites. Linear regression with log transformation was used to model aboveground biomass according to dendrometric parameters. Error analysis, including mean absolute percentage of error(MAPE) and root mean square of error(RMSE), was used to select and validate the models for both species. Model 1(biomass according to tree diameter) for P. africana and F. albida were considered more representative. The statistical parameters of these models were R2 = 0.99, MAPE 0.98% and RMSE1.75% for P. africana, and R2 = 0.99, MAPE 1.19%,RMSE 2.37% for F. albida. The average rate of carbon sequestered was significantly different for the two species(P ≤ 0.05). The total amount sequestered per tree averaged0.17 × 10-3 Mg for P. africana and 0.25 × 10-3 Mg for F. albida. These results could be used to develop policies that would lead to the sustainable management of these resources in the dry parklands of Niger.展开更多
Most left ventricular(LV)Doppler measurements vary significantly with age and gender,making it necessary to correct them for physiological variances.We aimed to verify the hypothesis that different Doppler measurement...Most left ventricular(LV)Doppler measurements vary significantly with age and gender,making it necessary to correct them for physiological variances.We aimed to verify the hypothesis that different Doppler measurements correlate nonlinearly with different biometric variables raised to different scaling factors and exponents.In this work,a total of 23 LV Doppler parameters were measured in 1224 healthy Chinese adults.An optimized multivariable allometric model(OMAM)and scaling equations were developed in 70%of the subjects(group A),and the reliability of the model and equations was verified using the remaining 30%of the subjects(group B)as well as 183 overweight subjects(group C).The single-variable isometric model(SVIM)with body surface area(BSA)as a scaling variable was used for comparison.Before correction,all 23 LV Doppler parameters correlated significantly with one or more of the biometric variables.In group B,gender differences were found in 47.8%(11/23)of the parameters and were eliminated in 81.8%(9/11)of the parameters after correction with OMAM.The successful correction rate with OMAM was 100%(23/23)in group B and 82.6%(19/23)in group C.New reference values for corrected Doppler measurements independent of biometric variables were established.The SVIM with BSA successfully corrected none of the 23 parameters.In conclusion,different LV Doppler parameters allometrically correlated with one or more of the biometric variables.The novel OMAM developed in this study successfully corrected the effects of the physiological variances of most biometric variables on Doppler measurements in healthy and overweight subjects,and was found to be far superior to the SVIM.However,whether the OMAM equations can be applied to other ethnicities,obese subjects,and pathological conditions requires further investigation.展开更多
Knowledge of which biological and functional traits have,or lack,phylogenetic signal in a particular group of organisms is important to understanding the formation and functioning of biological communities.Allometric ...Knowledge of which biological and functional traits have,or lack,phylogenetic signal in a particular group of organisms is important to understanding the formation and functioning of biological communities.Allometric biomass models reflecting tree growth characteristics are commonly used to predict forest biomass.However,few studies have examined whether model parameters are constrained by phylogeny.Here,we use a comprehensive database(including 276 tree species) compiled from 894 allometric biomass models published in 302 articles to examine whether parameters a and b of the model W=aD~b(where W stands for aboveground biomass,D is diameter at breast height) exhibit phylogenetic signal for all tree species as a whole and for different groups of tree species.For either model parameter,we relate difference in model parameter between different tree species to phylogenetic distance and to environmental distance between pairwise sites.Our study shows that neither model parameter exhibits phylogenetic signals(Pagel's λ and Blomberg's K both approach zero).This is the case regardless of whether all tree species in our data set were analyzed as a whole or tree species in different taxonomic groups(gymnosperm and angiosperm),leaf duration groups(evergreen and deciduous),or ecological groups(tropical,temperate and boreal) were analyzed separately.Our study also shows that difference in each parameter of the allometric biomass model is not significantly related to phylogenetic and environmental distances between tree species in different sites.展开更多
Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In to...Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In total, leaf area and leaf weight were measured from 455 fresh leaves of 25 trees of eucalyptus in southern China. The majority of the data (80%) were used for model calibration, and the remaining data (20%) were used for model validation. The linear, compound and power models were tested. Based on goodness of fit, prediction ability and residual performance, we found that linear and power models could best describe the relationship between leaf area and weight for young leaf and mature leaf, respectively. The study provides a simple and reliable method for estimating single-leaf area, which has a good potential in the functional- structural model of eucalyptus.展开更多
The Tibetan forest is one of the most important national forest zones in China. Despite the potentially important role that Tibetan forest will play in the Earth?s future carbon balance and climate regulation, few all...The Tibetan forest is one of the most important national forest zones in China. Despite the potentially important role that Tibetan forest will play in the Earth?s future carbon balance and climate regulation, few allometric equations exist for accurately estimating biomass and carbon budgets of this forest. In the present study, allometric equations,both species-specific and generic, were developed relating component biomass(DW) to diameter at breast height(DBH) and tree height(H) for six most common tree species in Tibetan forest. The 6 species were Abies georgei Orr., Picea spinulosa(Griff.)Henry, Pinus densata Mast., Pinus yunnanensis Franch., Cypresses funebris Endl. and Quercus semecarpifilia Smith.. The results showed that, both DBH-only and DBH2 H based species-specific equations showed a significant fit(P<0.05) for all tree species and biomass components. The DBH-only equations explained more than 80% variability of the component biomass and total biomass, adding H as a second independent variable increased the goodness of fit, while incorporating H into the term DBH2 H decreased the goodness of fit. However, not all DBH-H combined equations showed a significant fit(P<0.05) for all tree species and biomass components. Hence, the suggested species-specific allometric equations for the six most common tree species are of the form ln(DW) = c + αln(DBH). The generalized equations of mixed coniferous component biomass against DBH, DBH2 H and DBH-H also showed a significant fit(P<0.05) for all biomass components. However, due to significant species effect, the relative errors of the estimates were very high. Hence, generalized equations should only be used when there are too many different tree species, or there is no species-specific model of the same species or similar growth form in adjacent area.展开更多
Background: Currently, the common and feasible way to estimate the most accurate forest biomass requires ground measurements and allometric models.Previous studies have been conducted on allometric equations developm...Background: Currently, the common and feasible way to estimate the most accurate forest biomass requires ground measurements and allometric models.Previous studies have been conducted on allometric equations development for estimating tree aboveground biomass(AGB) of tropical dipterocarp forests(TDFs) in Kalimantan(Indonesian Borneo).However, before the use of existing equations, a validation for the selection of the best allometric equation is required to assess the model bias and precision.This study aims at evaluating the validity of local and pantropical equations; developing new allometric equations for estimating tree AGB in TDFs of Kalimantan; and validating the new equations using independent datasets.Methods: We used 108 tree samples from destructive sampling to develop the allometric equations, with maximum tree diameter of 175 cm and another 109 samples from previous studies for validating our equations.We performed ordinary least squares linear regression to explore the relationship between the AGB and the predictor variables in the natural logarithmic form.Results: This study found that most of the existing local equations tended to be biased and imprecise, with mean relative error and mean absolute relative error more than 0.1 and 0.3, respectively.We developed new allometric equations for tree AGB estimation in the TDFs of Kalimantan.Through a validation using an independent dataset,we found that our equations were reliable in estimating tree AGB in TDF.The pantropical equation, which includes tree diameter, wood density and total height as predictor variables performed only slightly worse than our new models.Conclusions: Our equations improve the precision and reduce the bias of AGB estimates of TDFs.Local models developed from small samples tend to systematically bias.A validation of existing AGB models is essential before the use of the models.展开更多
Aboveground biomass and carbon stock in the largest sacred grove of Manipur was estimated for trees with diameter [10 cm at 1.37 m height.The aboveground biomass,carbon stock,tree density and basal area of the sacred ...Aboveground biomass and carbon stock in the largest sacred grove of Manipur was estimated for trees with diameter [10 cm at 1.37 m height.The aboveground biomass,carbon stock,tree density and basal area of the sacred grove ranged from 962.94 to 1130.79 Mg ha;,481.47 to 565.40 Mg ha;C,1240 to 1320 stem ha;and79.43 to 90.64 m;ha;,respectively.Trees in diameter class of 30–40 cm contributed the highest proportion of aboveground biomass(22.50–33.73%).The aboveground biomass and carbon stock in research area were higher than reported for many tropical and temperate forests,suggesting a role of spiritual forest conservation for carbon sink management.展开更多
In order to compare to data gathering methods for shoot biomass assessments of Zostera marina, we compare two allometric models each one representing a data gathering method, one at leaf level and the other in aggrega...In order to compare to data gathering methods for shoot biomass assessments of Zostera marina, we compare two allometric models each one representing a data gathering method, one at leaf level and the other in aggregated form. The first allometric model presented leaf dry weight in terms of leaf length as . The second model is expressed as a several-variables version of the allometric Equation (1) dry weight of each leaf in a given shoot can be considered to be a random variable therefore shoot biomass ws can be represented in the form Both models presented similar determination coefficients values of 0.85 and 0.87 respectively. We found no significant differences between parameters α (p = 0.11) and β (p = 0.50) fitted for each model, showing that both equations conduced to the same result. Moreover, both fitted models presented high Concordance Correlation Coefficients of reproducibility () (0.92 and 0.91). We concluded that for shoot weight assessments if larger samples and faster data processing is required then should model of Equation (2) be used. On the other hand, we proposed model of Equation (1) if data at leaf level is required for other endeavors.展开更多
Roadside trees are effective natural solutions for mitigating climate change. Despite the usefulness of trees to carbon sequestration, there is a dearth of information on the estimation of biomass and carbon stock for...Roadside trees are effective natural solutions for mitigating climate change. Despite the usefulness of trees to carbon sequestration, there is a dearth of information on the estimation of biomass and carbon stock for roadside trees in the study area. This study aimed to estimate the carbon stock and carbon dioxide equivalent of roadside trees. A complete enumeration of trees was carried out in Kétou, Pobè and Sakété within the communes of the Plateau Department, Bénin Republic. Total height and diameter at breast height were measured from trees along the roads while individual wood density value was obtained from wood density database. The allometric method of biomass estimation was adopted for the research. The results showed that the total estimations for above-ground biomass, carbon stock and carbon equivalent from all the enumerated roadside trees were 154.53 mt, 72.63 mt and 266.55 mt, respectively. The results imply that the roadside trees contain a substantial amount of carbon stock that can contribute to climate change mitigation through carbon sequestration.展开更多
In a context of climate change characterized by rising temperatures, increased greenhouse gases and frequent droughts, the Sahel is presented as one of the most vulnerable areas to the adverse effects of climate chang...In a context of climate change characterized by rising temperatures, increased greenhouse gases and frequent droughts, the Sahel is presented as one of the most vulnerable areas to the adverse effects of climate change. The Sahel is presented as one of the most vulnerable areas to the adverse effects of climate change. The objective of this study is to assess the above-ground biomass and carbon stock of three Sahelian species: <em>Acacia raddiana</em> tortilis (Forsk.) hayne ssp. raddiana (savi) Brenan, <em>Acacia senegal</em> (L.) Willd and <em>Balanites aegyptiaca</em> (L.). The study was carried out in northern Senegal commonly known as Ferlo. Biomasses of the populations of the three target species were first assessed by harvesting the entire epigenetic part of the species and then modelled by correlation using dendrometric parameters measured on each individual of the sample. Two models, mono-specific and multi-species, were used. The results obtained showed that the diameter at breast height (<em>x</em>) and the parameter best correlated to the epigeal biomass (<em>y</em>). The dry biomass of woody plants was 31.4 ± 15.2 kg/tree for <em>B. aegyptiaca</em>, 30.6 ± 13.2 kg/tree for <em>A. senegal</em> and 26.2 ± 11.1 kg/tree for <em>A. raddiana</em>;<em>i.e</em>. carbon equivalents of 14.75 - 14.38 - 12.31 kg/tree respectively. The amount of carbon contained in the above-ground woody biomass is estimated at 4.48 t/ha. The carbon equivalent, atmospheric CO<sub>2</sub> is estimated at 16.44 tons of CO<sub>2</sub>/ha and based on the actual density of Ferlo (108.08 ± 49.79 ind/ha) the sequestered carbon of the area is estimated at 1777.008 tons of CO<sub>2</sub>. The comparison between the models developed in this study and the multispecific or mono-specific models from the literature showed substantial differences. This study contributes to a better understanding of the contribution of Sahelian woody species to carbon sequestration and the results could be used in the framework of adaptation to climate change.展开更多
Introduction:Quantifying forest biomass requires the application of allometric equations which is a fundamental step.Generalized allometric equations have been applied to quantify aboveground biomass(AGB)of forests.Bu...Introduction:Quantifying forest biomass requires the application of allometric equations which is a fundamental step.Generalized allometric equations have been applied to quantify aboveground biomass(AGB)of forests.But,adopting generalized allometric equations to quantify AGB of different forests creates uncertainty.Therefore,developing species-and sitespecific allometric equations is essential to accurately quantify the biomass.The study was aimed to develop species-specific allometric equations for Diospyros abyssinica(Hiern)F.White in Yayu Coffee Forest Biosphere Reserve using the Semi-destructive method.The vegetation types of Yayu Coffee Forest Biosphere Reserve is categorized to Moist Evergreen Montane Rainforest of Ethiopia.Results and discussion:Evaluating statistical relationships of AGB against predictor variables,eight allometric equations were formulated.AGB was regressed against trunk diameter(D),total height(H),and wood density(ρ)individually and in combination.Selection of allometric equations was employed using model performance statistics.Equations with a higher coefficient of determination(adjusted R^(2)),lower residual standard error,and Akaike information criterion(AIC)values were found best-fitted.Relationships of AGB and independent variables were found statistically significant(p<0.000).Overall,formulating species-and site-specific allometric equations is significant for accurate estimation of forest biomass and carbon stock budget.展开更多
We analyzed the number of cumulative positive cases of COVID-19 as a function of time in countries around the World.We tracked the increase in cases from the onset of the pandemic in each region for up to 150 days.We ...We analyzed the number of cumulative positive cases of COVID-19 as a function of time in countries around the World.We tracked the increase in cases from the onset of the pandemic in each region for up to 150 days.We found that in 81 out of 146 regions the trajectory was described with a power-law function for up to 30 days.We also detected scale-free properties in the majority of sub-regions in Australia,Canada,China,and the United States(US).We developed an allometric model that was capable of fitting the initial phase of the pandemic and was the best predictor for the propagation of the illness for up to 100 days.We then determined that the power-law COVID-19 exponent correlated with measurements of human mobility.The COVID-19 exponent correlated with the magnitude of air passengers per country.This correlation persisted when we analyzed the number of air passengers per US states,and even per US metropolitan areas.Furthermore,the COVID19 exponent correlated with the number of vehicle miles traveled in the US.Together,air and vehicular travel explained 70%of the variability of the COVID-19 exponent.Taken together,our results suggest that the scale-free propagation of the virus is present at multiple geographical scales and is correlated with human mobility.We conclude that models of disease transmission should integrate scale-free dynamics as part of the modeling strategy and not only as an emergent phenomenological property.展开更多
Purpose To challenge current conventions in paediatric sport science and use data from recent longitudinal studies to elu-cidate the development of aerobic and anaerobic fitness,with reference to youth athletes.Method...Purpose To challenge current conventions in paediatric sport science and use data from recent longitudinal studies to elu-cidate the development of aerobic and anaerobic fitness,with reference to youth athletes.Methods(1)To critically review the traditional practice of ratio scaling physiological variables with body mass and,(2)to use multiplicative allometric models of longitudinal data,founded on 1053(550 from boys)determinations of 10-17-year-olds’peak oxygen uptake(VO2)and 763(405 from boys)determinations of 11-17-year-olds’peak power output(PP)and mean power output(MP),to investigate the development of aerobic and anaerobic fitness in youth.Results The statistical assumptions underpinning ratio scaling of physiological variables in youth are seldom met.Multiplicative allometric modelling of longitudinal data has demonstrated that fat free mass(FFM)acting as a surrogate for active muscle mass,is the most powerful morphological influence on PP,MP,and peak VO2.With FFM appropriately controlled for,age effects remain significant but additional,independent effects of maturity status on anaerobic and aerobic fitness are negated.Conclusions Ratio scaling of physiological variables with body mass is fallacious,confounds interpretation of the develop-ment of anaerobic and aerobic fitness,and misleads fitness comparisons within and across youth sports.Rigorous evalua-tion of the development of anaerobic and aerobic fitness in youth requires longitudinal analyses of sex-specific,concurrent changes in age-and maturation-driven morphological covariates.Age and maturation-driven changes in FFM are essential considerations when evaluating the physiological development of youth athletes.展开更多
文摘A study was conducted in the forest area of Chittagong (South) Forest Division, Chittagong, Bangladesh for developing al- lometric models to estimate biomass organic carbon stock in the forest vegetation. Allometric models were tested separately for trees (divided into two DBH classes), shrubs, herbs and grasses. Model using basal area alone was found to be the best predictor of biomass organic carbon stock in trees because of high coefficient of determination (r^2 is 0.73697 and 0.87703 for 〉 5 cm to ≤ 15 cm and 〉 15 cm DBH (diameter at breast height) rang, respectively) and significance of regression (P is 0.000 for each DBH range) coefficients for both DBH range. The other models using height alone; DBH alone; height and DBH together; height, DBH and wood density; with liner and logarithmic relations produced relatively poor coefficient of determination. The allometric models for dominant 20 tree species were also developed separately and equation using basal area produced higher value of determination of coefficient. Allometric model using total biomass alone for shrubs, herbs and grasses produced higher value of determination of coefficient and significance of regression coefficient (r^2 is 0.87948 and 0.87325 for shrubs, herbs and grasses, respectively and P is 0.000 for each). The estimation of biomass organic carbon is a complicated and time consuming research. The allometric models developed in the present study can be utilized for future estimation of organic carbon stock in forest vegetation in Bangladesh as well as other tropical countries of the world.
基金supported by the Special Major Science and Technology Project of Anhui Province(S202103b06020066)the 2020 Annual Graduate Innovation Fund of Anhui Agricultural University(2020YSJ-21)。
文摘The aboveground biomass(AGB)of shrubs and small trees is the main component for the productivity and carbon storage of understory vegetation in subtropical secondary forests.However,few allometric models exist to accurately evaluate understory biomass.To estimate the AGB of five common shrub(diameter at base<5 cm,<5 m high)and one small tree species(<8 m high,trees’s seedling),206 individuals were harvested and species-specific and multi-species allometric models developed based on four predictors,height(H),stem diameter(D),crown area(Ca),and wood density(ρ).As expected,the six species possessed greater biomass in their stems compared with branches,with the lowest biomass in the leaves.Species-specific allometric models that employed stem diameter and the combined variables of D~2H andρDH as predictors accurately estimated the components and total AGB,with R^(2) values from 0.602 and 0.971.A multi-species shrub allometric model revealed that wood density×diameter×height(ρDH)was the best predictor,with R^(2) values ranging from between 0.81 and 0.89 for the components and total AGB,respectively.These results indicated that height(H)and diameter(D)were effective predictors for the models to estimate the AGB of the six species,and the introduction of wood density(ρ)improved their accuracy.The optimal models selected in this study could be applied to estimate the biomass of shrubs and small trees in subtropical regions.
基金supported by the project stocks and potential of carbon sequestration under agroforestry parklands in Niger funded by African Forest Forum(AFF)and International Foundation for Science(IFS),Grant No.D/563-1
文摘This study developed allometric models to estimate aboveground biomass and carbon of Prosopis africana and Faidherbia albida. The destructive method was used with a sample of 20 trees per species for the two parkland sites. Linear regression with log transformation was used to model aboveground biomass according to dendrometric parameters. Error analysis, including mean absolute percentage of error(MAPE) and root mean square of error(RMSE), was used to select and validate the models for both species. Model 1(biomass according to tree diameter) for P. africana and F. albida were considered more representative. The statistical parameters of these models were R2 = 0.99, MAPE 0.98% and RMSE1.75% for P. africana, and R2 = 0.99, MAPE 1.19%,RMSE 2.37% for F. albida. The average rate of carbon sequestered was significantly different for the two species(P ≤ 0.05). The total amount sequestered per tree averaged0.17 × 10-3 Mg for P. africana and 0.25 × 10-3 Mg for F. albida. These results could be used to develop policies that would lead to the sustainable management of these resources in the dry parklands of Niger.
基金supported by the Program of Introducing Talents of Discipline to Universities(BP 0719033)the State Key Program of the National Natural Science Foundation of China(82030051)+4 种基金the International Collaboration and Exchange Program of China(81920108003)the National Natural Science Foundation of China(81671703,81770442,and 11771408)the Qingdao Key Health Discipline Development Fund(3311000000073)the People’s Livelihood Science and Technology Project of Qingdao(18-6-1-62-nsh)the Fundamental Research Funds for the Central Universities(201964006)。
文摘Most left ventricular(LV)Doppler measurements vary significantly with age and gender,making it necessary to correct them for physiological variances.We aimed to verify the hypothesis that different Doppler measurements correlate nonlinearly with different biometric variables raised to different scaling factors and exponents.In this work,a total of 23 LV Doppler parameters were measured in 1224 healthy Chinese adults.An optimized multivariable allometric model(OMAM)and scaling equations were developed in 70%of the subjects(group A),and the reliability of the model and equations was verified using the remaining 30%of the subjects(group B)as well as 183 overweight subjects(group C).The single-variable isometric model(SVIM)with body surface area(BSA)as a scaling variable was used for comparison.Before correction,all 23 LV Doppler parameters correlated significantly with one or more of the biometric variables.In group B,gender differences were found in 47.8%(11/23)of the parameters and were eliminated in 81.8%(9/11)of the parameters after correction with OMAM.The successful correction rate with OMAM was 100%(23/23)in group B and 82.6%(19/23)in group C.New reference values for corrected Doppler measurements independent of biometric variables were established.The SVIM with BSA successfully corrected none of the 23 parameters.In conclusion,different LV Doppler parameters allometrically correlated with one or more of the biometric variables.The novel OMAM developed in this study successfully corrected the effects of the physiological variances of most biometric variables on Doppler measurements in healthy and overweight subjects,and was found to be far superior to the SVIM.However,whether the OMAM equations can be applied to other ethnicities,obese subjects,and pathological conditions requires further investigation.
基金Anhui Provincial Science and Technology Special Project (202204c06020014)the Provincial Natural Resources Fund (1908085QC140)。
文摘Knowledge of which biological and functional traits have,or lack,phylogenetic signal in a particular group of organisms is important to understanding the formation and functioning of biological communities.Allometric biomass models reflecting tree growth characteristics are commonly used to predict forest biomass.However,few studies have examined whether model parameters are constrained by phylogeny.Here,we use a comprehensive database(including 276 tree species) compiled from 894 allometric biomass models published in 302 articles to examine whether parameters a and b of the model W=aD~b(where W stands for aboveground biomass,D is diameter at breast height) exhibit phylogenetic signal for all tree species as a whole and for different groups of tree species.For either model parameter,we relate difference in model parameter between different tree species to phylogenetic distance and to environmental distance between pairwise sites.Our study shows that neither model parameter exhibits phylogenetic signals(Pagel's λ and Blomberg's K both approach zero).This is the case regardless of whether all tree species in our data set were analyzed as a whole or tree species in different taxonomic groups(gymnosperm and angiosperm),leaf duration groups(evergreen and deciduous),or ecological groups(tropical,temperate and boreal) were analyzed separately.Our study also shows that difference in each parameter of the allometric biomass model is not significantly related to phylogenetic and environmental distances between tree species in different sites.
文摘Leaf area is an important parameter for modeling tree growth and physiological processes of trees. The single young and mature leaf area estimation models of eucalyptus were developed based on leaf fresh weight. In total, leaf area and leaf weight were measured from 455 fresh leaves of 25 trees of eucalyptus in southern China. The majority of the data (80%) were used for model calibration, and the remaining data (20%) were used for model validation. The linear, compound and power models were tested. Based on goodness of fit, prediction ability and residual performance, we found that linear and power models could best describe the relationship between leaf area and weight for young leaf and mature leaf, respectively. The study provides a simple and reliable method for estimating single-leaf area, which has a good potential in the functional- structural model of eucalyptus.
基金supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA05050207)the National Natural Science Foundation of China (Grant No. 31300416)
文摘The Tibetan forest is one of the most important national forest zones in China. Despite the potentially important role that Tibetan forest will play in the Earth?s future carbon balance and climate regulation, few allometric equations exist for accurately estimating biomass and carbon budgets of this forest. In the present study, allometric equations,both species-specific and generic, were developed relating component biomass(DW) to diameter at breast height(DBH) and tree height(H) for six most common tree species in Tibetan forest. The 6 species were Abies georgei Orr., Picea spinulosa(Griff.)Henry, Pinus densata Mast., Pinus yunnanensis Franch., Cypresses funebris Endl. and Quercus semecarpifilia Smith.. The results showed that, both DBH-only and DBH2 H based species-specific equations showed a significant fit(P<0.05) for all tree species and biomass components. The DBH-only equations explained more than 80% variability of the component biomass and total biomass, adding H as a second independent variable increased the goodness of fit, while incorporating H into the term DBH2 H decreased the goodness of fit. However, not all DBH-H combined equations showed a significant fit(P<0.05) for all tree species and biomass components. Hence, the suggested species-specific allometric equations for the six most common tree species are of the form ln(DW) = c + αln(DBH). The generalized equations of mixed coniferous component biomass against DBH, DBH2 H and DBH-H also showed a significant fit(P<0.05) for all biomass components. However, due to significant species effect, the relative errors of the estimates were very high. Hence, generalized equations should only be used when there are too many different tree species, or there is no species-specific model of the same species or similar growth form in adjacent area.
基金the GIZ-Forclime project, a bilateral project between Indonesia and German governments, for funding the field measurements
文摘Background: Currently, the common and feasible way to estimate the most accurate forest biomass requires ground measurements and allometric models.Previous studies have been conducted on allometric equations development for estimating tree aboveground biomass(AGB) of tropical dipterocarp forests(TDFs) in Kalimantan(Indonesian Borneo).However, before the use of existing equations, a validation for the selection of the best allometric equation is required to assess the model bias and precision.This study aims at evaluating the validity of local and pantropical equations; developing new allometric equations for estimating tree AGB in TDFs of Kalimantan; and validating the new equations using independent datasets.Methods: We used 108 tree samples from destructive sampling to develop the allometric equations, with maximum tree diameter of 175 cm and another 109 samples from previous studies for validating our equations.We performed ordinary least squares linear regression to explore the relationship between the AGB and the predictor variables in the natural logarithmic form.Results: This study found that most of the existing local equations tended to be biased and imprecise, with mean relative error and mean absolute relative error more than 0.1 and 0.3, respectively.We developed new allometric equations for tree AGB estimation in the TDFs of Kalimantan.Through a validation using an independent dataset,we found that our equations were reliable in estimating tree AGB in TDF.The pantropical equation, which includes tree diameter, wood density and total height as predictor variables performed only slightly worse than our new models.Conclusions: Our equations improve the precision and reduce the bias of AGB estimates of TDFs.Local models developed from small samples tend to systematically bias.A validation of existing AGB models is essential before the use of the models.
基金funded by Department of Science and Technology(DST),New Delhi India
文摘Aboveground biomass and carbon stock in the largest sacred grove of Manipur was estimated for trees with diameter [10 cm at 1.37 m height.The aboveground biomass,carbon stock,tree density and basal area of the sacred grove ranged from 962.94 to 1130.79 Mg ha;,481.47 to 565.40 Mg ha;C,1240 to 1320 stem ha;and79.43 to 90.64 m;ha;,respectively.Trees in diameter class of 30–40 cm contributed the highest proportion of aboveground biomass(22.50–33.73%).The aboveground biomass and carbon stock in research area were higher than reported for many tropical and temperate forests,suggesting a role of spiritual forest conservation for carbon sink management.
文摘In order to compare to data gathering methods for shoot biomass assessments of Zostera marina, we compare two allometric models each one representing a data gathering method, one at leaf level and the other in aggregated form. The first allometric model presented leaf dry weight in terms of leaf length as . The second model is expressed as a several-variables version of the allometric Equation (1) dry weight of each leaf in a given shoot can be considered to be a random variable therefore shoot biomass ws can be represented in the form Both models presented similar determination coefficients values of 0.85 and 0.87 respectively. We found no significant differences between parameters α (p = 0.11) and β (p = 0.50) fitted for each model, showing that both equations conduced to the same result. Moreover, both fitted models presented high Concordance Correlation Coefficients of reproducibility () (0.92 and 0.91). We concluded that for shoot weight assessments if larger samples and faster data processing is required then should model of Equation (2) be used. On the other hand, we proposed model of Equation (1) if data at leaf level is required for other endeavors.
文摘Roadside trees are effective natural solutions for mitigating climate change. Despite the usefulness of trees to carbon sequestration, there is a dearth of information on the estimation of biomass and carbon stock for roadside trees in the study area. This study aimed to estimate the carbon stock and carbon dioxide equivalent of roadside trees. A complete enumeration of trees was carried out in Kétou, Pobè and Sakété within the communes of the Plateau Department, Bénin Republic. Total height and diameter at breast height were measured from trees along the roads while individual wood density value was obtained from wood density database. The allometric method of biomass estimation was adopted for the research. The results showed that the total estimations for above-ground biomass, carbon stock and carbon equivalent from all the enumerated roadside trees were 154.53 mt, 72.63 mt and 266.55 mt, respectively. The results imply that the roadside trees contain a substantial amount of carbon stock that can contribute to climate change mitigation through carbon sequestration.
文摘In a context of climate change characterized by rising temperatures, increased greenhouse gases and frequent droughts, the Sahel is presented as one of the most vulnerable areas to the adverse effects of climate change. The Sahel is presented as one of the most vulnerable areas to the adverse effects of climate change. The objective of this study is to assess the above-ground biomass and carbon stock of three Sahelian species: <em>Acacia raddiana</em> tortilis (Forsk.) hayne ssp. raddiana (savi) Brenan, <em>Acacia senegal</em> (L.) Willd and <em>Balanites aegyptiaca</em> (L.). The study was carried out in northern Senegal commonly known as Ferlo. Biomasses of the populations of the three target species were first assessed by harvesting the entire epigenetic part of the species and then modelled by correlation using dendrometric parameters measured on each individual of the sample. Two models, mono-specific and multi-species, were used. The results obtained showed that the diameter at breast height (<em>x</em>) and the parameter best correlated to the epigeal biomass (<em>y</em>). The dry biomass of woody plants was 31.4 ± 15.2 kg/tree for <em>B. aegyptiaca</em>, 30.6 ± 13.2 kg/tree for <em>A. senegal</em> and 26.2 ± 11.1 kg/tree for <em>A. raddiana</em>;<em>i.e</em>. carbon equivalents of 14.75 - 14.38 - 12.31 kg/tree respectively. The amount of carbon contained in the above-ground woody biomass is estimated at 4.48 t/ha. The carbon equivalent, atmospheric CO<sub>2</sub> is estimated at 16.44 tons of CO<sub>2</sub>/ha and based on the actual density of Ferlo (108.08 ± 49.79 ind/ha) the sequestered carbon of the area is estimated at 1777.008 tons of CO<sub>2</sub>. The comparison between the models developed in this study and the multispecific or mono-specific models from the literature showed substantial differences. This study contributes to a better understanding of the contribution of Sahelian woody species to carbon sequestration and the results could be used in the framework of adaptation to climate change.
文摘Introduction:Quantifying forest biomass requires the application of allometric equations which is a fundamental step.Generalized allometric equations have been applied to quantify aboveground biomass(AGB)of forests.But,adopting generalized allometric equations to quantify AGB of different forests creates uncertainty.Therefore,developing species-and sitespecific allometric equations is essential to accurately quantify the biomass.The study was aimed to develop species-specific allometric equations for Diospyros abyssinica(Hiern)F.White in Yayu Coffee Forest Biosphere Reserve using the Semi-destructive method.The vegetation types of Yayu Coffee Forest Biosphere Reserve is categorized to Moist Evergreen Montane Rainforest of Ethiopia.Results and discussion:Evaluating statistical relationships of AGB against predictor variables,eight allometric equations were formulated.AGB was regressed against trunk diameter(D),total height(H),and wood density(ρ)individually and in combination.Selection of allometric equations was employed using model performance statistics.Equations with a higher coefficient of determination(adjusted R^(2)),lower residual standard error,and Akaike information criterion(AIC)values were found best-fitted.Relationships of AGB and independent variables were found statistically significant(p<0.000).Overall,formulating species-and site-specific allometric equations is significant for accurate estimation of forest biomass and carbon stock budget.
文摘We analyzed the number of cumulative positive cases of COVID-19 as a function of time in countries around the World.We tracked the increase in cases from the onset of the pandemic in each region for up to 150 days.We found that in 81 out of 146 regions the trajectory was described with a power-law function for up to 30 days.We also detected scale-free properties in the majority of sub-regions in Australia,Canada,China,and the United States(US).We developed an allometric model that was capable of fitting the initial phase of the pandemic and was the best predictor for the propagation of the illness for up to 100 days.We then determined that the power-law COVID-19 exponent correlated with measurements of human mobility.The COVID-19 exponent correlated with the magnitude of air passengers per country.This correlation persisted when we analyzed the number of air passengers per US states,and even per US metropolitan areas.Furthermore,the COVID19 exponent correlated with the number of vehicle miles traveled in the US.Together,air and vehicular travel explained 70%of the variability of the COVID-19 exponent.Taken together,our results suggest that the scale-free propagation of the virus is present at multiple geographical scales and is correlated with human mobility.We conclude that models of disease transmission should integrate scale-free dynamics as part of the modeling strategy and not only as an emergent phenomenological property.
文摘Purpose To challenge current conventions in paediatric sport science and use data from recent longitudinal studies to elu-cidate the development of aerobic and anaerobic fitness,with reference to youth athletes.Methods(1)To critically review the traditional practice of ratio scaling physiological variables with body mass and,(2)to use multiplicative allometric models of longitudinal data,founded on 1053(550 from boys)determinations of 10-17-year-olds’peak oxygen uptake(VO2)and 763(405 from boys)determinations of 11-17-year-olds’peak power output(PP)and mean power output(MP),to investigate the development of aerobic and anaerobic fitness in youth.Results The statistical assumptions underpinning ratio scaling of physiological variables in youth are seldom met.Multiplicative allometric modelling of longitudinal data has demonstrated that fat free mass(FFM)acting as a surrogate for active muscle mass,is the most powerful morphological influence on PP,MP,and peak VO2.With FFM appropriately controlled for,age effects remain significant but additional,independent effects of maturity status on anaerobic and aerobic fitness are negated.Conclusions Ratio scaling of physiological variables with body mass is fallacious,confounds interpretation of the develop-ment of anaerobic and aerobic fitness,and misleads fitness comparisons within and across youth sports.Rigorous evalua-tion of the development of anaerobic and aerobic fitness in youth requires longitudinal analyses of sex-specific,concurrent changes in age-and maturation-driven morphological covariates.Age and maturation-driven changes in FFM are essential considerations when evaluating the physiological development of youth athletes.