期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Effect of rolling technologies on the properties of Pb?0.06wt%Ca?1.2wt%Sn alloy anodes during copper electrowinning 被引量:4
1
作者 Jian Yang Bu-ming Chen +2 位作者 Hui Hang Zhong-cheng Guo Shuai Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第11期1205-1211,共7页
The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the propert... The objective of this work was to study the effect of different rolling technologies on the properties of Pb-0.06wt%Ca-1.2wt%Sn anodes during copper electrowinning and to determine the relationship between the properties of the anodes and rolling techniques during copper electrowinning. The anode process was investigated via anodic polarization curves, cyclic voltammetry curves, electrochemical impedance spectra, and corrosion tests. The microscopic morphology and phase composition of the anodic oxide layers were observed by scanning electron microscopy and X-ray diffraction, respectively. Observable variations in the electrocatalytic activity and reaction kinetics of anodes during electrowinning indicated that the electrochemical behavior of the anodes was strongly affected by the rolling technology. An increase in the rolling number tended to decrease the oxygen evolution overpotential and the corrosion rate of the anodes. These trends are contrary to that of the apparent exchange current density. Furthermore, the intensities of diffraction peaks associated with PbO, PbOx, and α-PbO2 tended to increase with increasing rolling number. In addition, the rolled anodes exhibited a more uniform microstructure. Compared with one-way rolled anodes, the eight-time cross rolled anodes exhibited better electrocatalytic activity and improved corrosion resistance. 展开更多
关键词 anode materials lead calcium tin alloys rolling electrocatalysis corrosion rate electrowinning
下载PDF
Self-healing Ga-based liquid metal/alloy anodes for rechargeable batteries
2
作者 Meijia Song Zhonghua Zhang 《Nano Research》 SCIE EI CSCD 2024年第3期1366-1383,共18页
With the rapid development of electronics,electric vehicles,and grid energy storage stations,higher requirements have been put forward for advanced secondary batteries.Liquid metal/alloy electrodes have been considere... With the rapid development of electronics,electric vehicles,and grid energy storage stations,higher requirements have been put forward for advanced secondary batteries.Liquid metal/alloy electrodes have been considered as a promising development direction to achieve excellent electrochemical performance in metal-ion batteries,due to their specific advantages including the excellent electrode kinetics and self-healing ability against microstructural electrode damage.For conventional liquid batteries,high temperatures are needed to keep electrode liquid and ensure the high conductivity of molten salt electrolytes,which also brings the corrosion and safety issues.Ga-based metal/alloys,which can be operated at or near room temperature,are potential candidates to circumvent the above problems.In this review,the properties and advantages of Ga-based metal/alloys are summarized.Then,Ga-based liquid metal/alloys as anodes in various metal-ion batteries are reviewed in terms of their self-healing ability,battery configurations,working mechanisms,and so on.Furthermore,some views on the future development of Ga-based electrodes in batteries are provided. 展开更多
关键词 metal-ion batteries Ga-based liquid metal/alloy anodes self-healing capability room temperature
原文传递
Effectiveness Evaluation Study of Self-made Zinc Alloy Sacrificial Anode under Chloride Salt Erosion Environment
3
作者 南雪丽 JI Jianrui +3 位作者 LI Rongyang CHEN Hao WANG Yi TANG Weibin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期222-230,共9页
To investigate the effectiveness of self-made zinc alloy sacrificial anode material for the protection of reinforcement in concrete under chlorine salt erosion environment,salt solution immersion corrosion and electro... To investigate the effectiveness of self-made zinc alloy sacrificial anode material for the protection of reinforcement in concrete under chlorine salt erosion environment,salt solution immersion corrosion and electromigration accelerated corrosion tests were used to evaluate the effectiveness of self-made zinc alloy anode with the help of relevant cathodic protection guidelines and evaluation criteria for the corrosion of reinforcement in concrete.The results showed that the protection was effective because the potential of the zinc alloy anode protection steel bar in the salt solution satis?ed the“-780 mV(SCE)”validity criterion.The self-corrosion potential(E_(corr))of the sacri?cial anode protection steel in concrete was greater than-276 mV,and the protective current density of the zinc alloy anode was 1-3μA·cm^(-2),which met the standards of EN12696-2000,further indicating that the self-made zinc alloy sacri?cial anode had a good protection combining with the polarization resistance and the appearance of the corroded surface of the steel in concrete.The microscopic morphology of the corroded surface and the composition of the corrosion products indicates that the mortar of the self-made zinc alloy anode has a lower pH than the imported anodes,so the long-term protection of the selfmade zinc alloy sacri?cial anode needs to be further improved. 展开更多
关键词 zinc alloy anode cathodic protection steel corrosion CONCRETE polarization curve
下载PDF
Surface‑Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High‑Performance Aqueous Zinc‑Ion Battery 被引量:4
4
作者 Huan Meng Qing Ran +8 位作者 Tian-Yi Dai Hang Shi Shu-Pei Zeng Yong-Fu Zhu Zi Wen Wei Zhang Xing-You Lang Wei-Tao Zheng Qing Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期58-71,共14页
Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large vol... Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large voltage polarization,low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating,hindering the practical application in aqueous rechargeable zinc-metal batteries(AR-ZMBs).Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials.As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples,the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte,with ultralow polarizations under current densities up to 50 mA cm^(‒2),exceptional stability for 1900 h and high Zn utilization.This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and K_(z)MnO_(2)cathode to achieve specific energy of as high as~430 Wh kg^(‒1)with~99.8%Coulombic efficiency,and retain~86%after long-term cycles for>700 h. 展开更多
关键词 Nanoporous metal Zinc-based alloy anode Aqueous zinc-ion batteries Surface alloying
下载PDF
Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery 被引量:2
5
作者 Fanglei Tong Xize Chen +3 位作者 Shanghai Wei Jenny Malmstr^m Joseph Vella Wei Gao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1967-1976,共10页
Four Mg-x Zn-y Sn(x=2,4 and y=1,3 wt.%)alloys are investigated as anode materials for magnesium-air(Mg-air)battery.The self-corrosion and battery discharge behavior of these four Mg-Zn-Sn alloys are analyzed by electr... Four Mg-x Zn-y Sn(x=2,4 and y=1,3 wt.%)alloys are investigated as anode materials for magnesium-air(Mg-air)battery.The self-corrosion and battery discharge behavior of these four Mg-Zn-Sn alloys are analyzed by electrochemical measurements and Mg-air battery tests.The results show that addition of Sn stimulates the electrochemical activity and significantly improves the anodic efficiency and specific capacity of Mg-Zn alloy anodes.Among the four alloy anodes,Mg-2Zn-3Sn(ZT23)shows the best battery discharge performance at low current densities(≤5 m A cm^(-2)),achieving high energy density of 1367 m Wh g^(-1)at 2 mA cm^(-2).After battery discharging,the surface morphology and electrochemical measurement results illustrate that a ZnO and SnO/SnO_(2)mixed film on alloy anode surface decreases self-corrosion and improves anodic efficiency during discharging.The excessive intermetallic phases lead to the failure of passivation films,acting as micro-cathodes to accelerate self-corrosion. 展开更多
关键词 Magnesium alloys alloy anode Self-corrosion Magnesium-air battery Discharge performance
下载PDF
Passivation of Insoluble Anode from Ti-base Alloys in Preparation of Electrolytic MnO_2
6
作者 俞征 杨生恕 《Rare Metals》 SCIE EI CAS CSCD 1994年第4期279-286,共8页
The passivation behavior of insoluble anode from 8 kinds of Ti-base alloys in the 40% H_2SO_4(aq)and1 mol/L MnSO_4 -0.75 mol/L H_2SO_4 was studied respectively by analyzing potential-controlling stationarypolarizatio... The passivation behavior of insoluble anode from 8 kinds of Ti-base alloys in the 40% H_2SO_4(aq)and1 mol/L MnSO_4 -0.75 mol/L H_2SO_4 was studied respectively by analyzing potential-controlling stationarypolarization curve. Results indicate that the passivation curves of Ti-base alloy insoluble anode are analogousto that of pare titanium anodc in spite of the critical passivation current density i_b for the former is somewhathigher and passivation retaining current density i_p increases significantly, the passivation region diminishes.the passivation becomes not so clear. Ou the basis of electrochemical and X-ray diffraction data the passivationmechanism of pure titanium anode in EMD industry is discussed and authors suggest that the Ti- base alloyanode is better than the pure titanium anode. 展开更多
关键词 Ti-base alloy iusolublc anode EMD PASSIVATION Potcntial-controllingstationary polarization curve
下载PDF
Study on the Rare Earth Sealing Procedure of the Porous Film of Anodized 2024 Aluminum Alloy 被引量:1
7
作者 XingwenYU ChuanweiYAN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第1期51-53,共3页
关键词 Rare earth sealing Anodized aluminum alloy Scanning electron microscope Cyclic voltammetry
下载PDF
Revealing the structure design of alloyed based electrodes for alkali metal ion batteries with in situ TEM
8
作者 Huawen Huang Ran Bi +4 位作者 Jie Cui Ming-Ming Hu Li Tian Xianfeng Yang Lei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期405-418,I0009,共15页
Alloyed based anode materials with high theoretical specific capacity and low reaction potential are considered to be highly potential high-energy density anode materials for alkali metal ion batteries(AMIBs).Thus,the... Alloyed based anode materials with high theoretical specific capacity and low reaction potential are considered to be highly potential high-energy density anode materials for alkali metal ion batteries(AMIBs).Thus,the design of alloyed based materials with high electrochemical performance has attracted great attention.Among the numerous characterization methods for guiding electrode materials design,in situ transmission electron microscopy(TEM)gradually plays an irreplaceable role due to its high temporal and spatial resolution in directly observing the change of morphology,crystal structure and element evolutions.Herein,we reviewed the two current research hotspots and mainly focused on the structure design of alloyed based electrode material under the guidance of in situ TEM.Specifically,various nanostructure designs of alloyed based electrode materials with guidance of in situ TEM were employed to solve the key scientific issues of the violent volume change during alloying/dealloying processes for enhanced electrochemical performances.Mainly through introducing buffer space in the electrode material to reduce volume change to improve structural stability,including porous structure(0 D),nanotube structure(1 D),simple hollow structure,yolk-shell structure and some hybrid hollow structures(3 D).Furthermore,the direct guidance of in situ TEM is expected for creating new opportunities to nextgeneration electrode material design for AMIBs. 展开更多
关键词 In situ TEM alloyed based anode Nanostructure design Alkali metal ion batteries
下载PDF
Corrosion protection of magnesium alloys anode by cerium-based anodization coating in magnesium-ait battery 被引量:2
9
作者 Xiang You Xiaowei Zhang +6 位作者 Chuang Yu Yuanliang Chen Huiming Li Yanqing Hou Lin Tian Ni Yang Gang Xie 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第3期471-476,I0006,共7页
CeN_(3)O_(9)·6H_(2)O(0.5,1.0,1.5,and 2.0 g/L)was added into an 8.0%NaCl electrolyte solution to investigate this electrolyte for use in a Mg-air battery.The effects of the amount of CeN_(3)O_(9)-6H_(2)O on the co... CeN_(3)O_(9)·6H_(2)O(0.5,1.0,1.5,and 2.0 g/L)was added into an 8.0%NaCl electrolyte solution to investigate this electrolyte for use in a Mg-air battery.The effects of the amount of CeN_(3)O_(9)-6H_(2)O on the corrosion resistance of an AZ31 Mg alloy anode and battery performance were investigated using microstructure,electrochemical(dynamic potential polarization method and electrochemical impedance spectroscopy),and battery measurements.The re sults show that the addition of CeN_(3)O_(9)·6H_(2)O to the electrolyte leads to the formation of a Ce(OH)_(3)protective film on the surface of the AZ31 Mg alloy that improves the corrosion resistance of the Mg alloy.An increase in the concentration of CeN_(3)O_(9)·6H_(2)O results in a denser Ce(OH)_(3)protective film and decreases corrosion rate of the AZ31 Mg alloy.When the concentration of CeN_(3)O_(9)·6H_(2)O is 1.0 g/L,the corrosion rate of the Mg alloy is the lowest with a corrosion inhibition rate of70.4%.However,the corrosion rate increases due to the dissolution of the Ce(OH)_(3)protective film when the concentration of CeN_(3)O_(9)-6H_(2)O is greater than 1.0 g/L.Immersing the Mg alloy in the electrolyte solution containing CeN_(3)O_(9)-6H_(2)O for 50 h leads to the formation of the Ce(HO)_(3)protective film on its surface,which was confirmed by scanning electron microscopy of the AZ31 alloy.The Mg^(2+)charge transfer resistance increases by 69.5Ωfrom the equivalent circuit diagram,which improves the corrosion resistance of the Mg alloy.The discharge performance of CeN_(3)O_(9)·6H_(2)O improves according to a discharge test,and the discharge time increases by 40 min. 展开更多
关键词 Az31 magnesium alloy anode CeN_(3)O_(9)·6H_(2)O addition Magnesium-air battery Corrosion rate Electrochemical Rare earths
原文传递
Achieving stable K-storage performance of carbon sphere-confined Sb via electrolyte regulation 被引量:1
10
作者 Ningning Chen Nailu Shen +4 位作者 Xiaoping Yi Yinshuang Pang Jing Zheng Qingxue Lai Yanyu Liang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期51-58,I0002,共9页
Potassium-ion batteries(PIBs)have been considered as one of the most promising alternatives to lithiumion batteries(LIBs)in view of their competitive energy density with significantly reduced product cost.Moreover,all... Potassium-ion batteries(PIBs)have been considered as one of the most promising alternatives to lithiumion batteries(LIBs)in view of their competitive energy density with significantly reduced product cost.Moreover,alloy-type materials are expected as a high-performance anode of PIBs thanks to their intrinsic chemical stability as well as high theoretical specific capacity.Unfortunately,the serious incompatibility between alloy-type active materials and electrolytes,especially for the formation of unstable solidelectrolyte interfacial(SEI)films,often leads to insufficient cycle life.Herein,the formation mechanism of SEI films in the K-storage systems based on carbon sphere confined Sb anode(Sb@CS)were investigated in commercially available electrolytes.Physical characterizations and theoretical calculation revealed that the solvents in the dilute electrolyte of 0.8 M KPF_(6)/EC+DEC were excessively decomposed on the interface to generate unstable SEI and thus result in inferior K-storage stability.On the contrary,a salt-concentrated electrolyte(3 M KFSI/DME)can generate inorganic-dominated stable SEI due to the preferential decomposition of anions.As a result,the prepared Sb@CS in the matched 3 M KFSI/DME electrolyte delivered a high reversible capacity of 467.8 m A h g^(-1)after 100 cycles at 100 m A g^(-1),with a slow capacity decay of 0.19%per cycle from the 10th to the 100th cycle.These findings are of great significance for revealing the interfacial reaction between electrodes and electrolytes as well as improving the stability of Sb-based anode materials for PIBs. 展开更多
关键词 Interfacial regulation Solid-electrolyte interface Sb-based alloy anode Electrolyte compatibility Potassium-ion batteries
下载PDF
Seamlessly Merging the Capacity of P into Sb at Same Voltage with Maintained Superior Cycle Stability and Low-temperature Performance for Li-ion Batteries
11
作者 Yaqing Wei Jun He +8 位作者 Jie Zhang Mingyang Ou Yanpeng Guo Jiajun Chen Cheng Zeng Jia Xu Jiantao Han Tianyou Zhai Huiqiao Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期195-201,共7页
Among the alloying-type anodes,elemental Sb possesses the suitable yet safe plateau,simple lithiation pathway,small voltage polarization,high conductivity,and superior cycle stability.However,challenge is that its int... Among the alloying-type anodes,elemental Sb possesses the suitable yet safe plateau,simple lithiation pathway,small voltage polarization,high conductivity,and superior cycle stability.However,challenge is that its intrinsic capacity is rather low(660 mAh g^(-1)),<1/6 of silicon.Herein,we propose a seamless integration strategy by merging the voltage and capacity of phosphorus and antimony into a solid solution alloy.Interestingly,the enlistment of P is found greatly enlarge the capacity from 660 to 993 mAh g^(-1) for such Sb_(30)P_(30) solid solution,while maintaining a single and stable discharge plateau(~0.79 V)similar to elemental Sb.Various experimental characterizations including XPS,PDF,Raman,and EDS mapping reveal that in such a material the P and Sb atoms have interacted with each other to form a homogenous solid solution alloy,rather than a simple mixing of the two substances.Thus,the Sb_(30)P_(30) exhibits superior rate performances(807 mAh g^(-1) at 5000 mA g^(-1))and cyclability(821 mAh g^(-1) remained after 300 cycles).Furthermore,such Sb_(60-x)P_(x) alloys can even deliver 621 mAh g^(-1) at30℃,which can be served as the alternative anode materials for high-energy and low-temperature batteries.This unique seamless integration strategy based on solid solution chemistry can be easily leveraged to manipulate the capacity of other electrode materials at similar voltage. 展开更多
关键词 alloy anode ANTIMONY lithium-ion batteries low-temperature performance phosphorus
下载PDF
Fabrication and characterization of anodic oxide nanotubes on TiNb alloys 被引量:3
12
作者 Ming Jin Xin Lu +2 位作者 Yi Qiao Lu-Ning Wang Alex A.Volinsky 《Rare Metals》 SCIE EI CAS CSCD 2016年第2期140-148,共9页
Titanium and its alloys have been extensively used as implant materials owing to their high specific strength, good biocompatibility and excellent corrosion resistance. Oxide nanotubular array layer can be formed on T... Titanium and its alloys have been extensively used as implant materials owing to their high specific strength, good biocompatibility and excellent corrosion resistance. Oxide nanotubular array layer can be formed on Ti alloy surface by electrochemical anodization treatment. In this work, the morphology of nanotubes formed on Ti-Nb alloys(Nb content of 5 wt%, 10 wt%, 20 wt%, 30 wt% and40 wt%) was investigated using an electrolyte containing ethylene glycol and NH_4 F. Oxide layers consisting of highly ordered nanotubes with a range of diameters(approximately40-55 nm for the inner diameter and 100-120 nm for the outer diameter) and lengths(approximately 10-20 lm) can be formed on alloys in the Ti-x Nb system, independent on the Nb content. The nanotubes formed on the Ti-Nb alloy surface were transformed from the anatase to rutile structure of titanium oxide. The oxide nanotubular surface is highly hydrophilic compared with the intact Ti Nb foil. The surface wettability varies with the nanotube diameter. As the nanotube diameter increases while the nanotube layer thickness remains constant, the capillary wetting of the nanotube surface decreases and the surface becomes less hydrophilic.Annealing changes the nanotubular surface wettability further and establishes less hydrophilic surface conditions due to the removal of hydroxyl groups and residue fluoridecontaining species. It is believed that the surface wettability is changed due to the decreasing content of hydroxyl groups in ambient atmosphere. This work can provide guidelines for improving structural and environmental conditions responsible for changing surface wettability of Ti Nb surfaces for biomedical applications. 展开更多
关键词 Ti-Nb alloy Anodization Nanotubes Wettability Implants
原文传递
Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries:synthesis,construction and application 被引量:12
13
作者 Wen Luo Jean-Jacques Gaumet Li-Qiang Mai 《Rare Metals》 SCIE EI CAS CSCD 2017年第5期321-338,共18页
The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicle... The development of alternative electrode materials with high energy densities and power densities for batteries has been actively pursued to satisfy the power demands for electronic devices and hybrid electric vehicles. Recently, antimony(Sb)-based intermetallic compounds have attracted considerable research interests as new candidate anode materials for high-performance lithium-ion batteries(LIBs) and sodium-ion batteries(SIBs) due to their high theoretical capacity and suitable operating voltage. However, these intermetallic systems undergo large volume change during charge and discharge processes, which prohibits them from practical application. The rational construction of advanced anode with unique structures has been proved to be an effective approach to enhance its electrochemical performance. This review highlights the recent progress in improving and understanding the electrochemical performances of various Sb-based intermetallic compound anodes. The developments of synthesis and construction of Sb-based intermetallic compounds are systematically summarized. The electrochemical performances of various Sb-based intermetallic compound anodes are compared in its typical applications(LIBs or SIBs). 展开更多
关键词 Antimony Intermetallic compound alloy anode Sodium-ion battery Lithium-ion battery
原文传递
Mixture of Oxides with Different Valence States in Nanotubes 被引量:1
14
作者 Xiaoli Zhao Meilin Dai +4 位作者 Shujun Li Yulin Hao Rui Yang Lei Wang Yandong Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第2期142-146,共5页
Oxide nanotubes with different diameters and lengths were fabricated on the biomedical Ti2448 alloy by anodic oxidation in neutral electrolyte. Similar to oxide nanotubes fabricated on pure titanium and its alloys, th... Oxide nanotubes with different diameters and lengths were fabricated on the biomedical Ti2448 alloy by anodic oxidation in neutral electrolyte. Similar to oxide nanotubes fabricated on pure titanium and its alloys, the as-grown nanotubes on Ti2448 also exhibit gradually changing chemical distribution along the direction of tube growth. Furthermore, several kinds of oxides with different valence states (MxOy) are formed simultaneously for each alloying element M, while their volume fractions vary gradually along the tube-growth direction. The findings of this study would provide insight into the effect of valence states on the desired nanotube properties and help develop ways to enhance the properties of the preferred oxide. 展开更多
关键词 Biomedical titanium alloy Oxide nanotube Anodic oxidation Chemical distribution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部