Additive Manufacturing(AM)is revolutionizing aerospace,transportation,and biomedical sectors with its potential to create complex geometries.However,the metallic materials currently used in AM are not intended for hig...Additive Manufacturing(AM)is revolutionizing aerospace,transportation,and biomedical sectors with its potential to create complex geometries.However,the metallic materials currently used in AM are not intended for high-energy beam processes,suggesting performance improvement.The development of materials for AM still faces challenge because of the inefficient trial-and-error conventional methods.This review examines the challenges and current state of materials including aluminum alloys,titanium alloys,superalloys,and high-entropy alloys(HEA)in AM,and summarizes the high-throughput methods in alloy development for AM.In addition,the advantages of high-throughput preparation technology in improving the properties and optimizing the microstructure mechanism of major additive manufacturing alloys are described.This article concludes by emphasizing the importance of high-throughput techniques in pushing the boundaries of AM materials development,pointing toward a future of more effective and innovative material solutions.展开更多
A series of Ni-Fe-Ga alloys near the prototype Heusler composition (X2YZ) were prepared through arc-melting suction-casting method. The dependences of the transformation behavior on the alloy composition and anneali...A series of Ni-Fe-Ga alloys near the prototype Heusler composition (X2YZ) were prepared through arc-melting suction-casting method. The dependences of the transformation behavior on the alloy composition and annealing treatment were studied in detail by an optical microscope, X-ray diffraction, and differential scanning calorimeters methods. The experimental results show that the martensitic transformation temperatures increase almost linearly with increasing Ni content in all the NiFeGa alloys. Annealing the Ni55.5Fe18Ga26.5 alloy at 100-500 ℃ for 3 h and at 300 ℃ for 1-10 h shifts the martensitic transformation start temperature by almost 20 ℃ to high temperature. The variations in the martensitic transformation temperatures in these alloys are discussed in terms of structural differences resulting from alloy composition and annealing treatment.展开更多
The magnetic properties, structure defects of electrodeposited Fe-Ni-P alloys with various compositions and the thermostability at amorphous state have been studied by DSC, positron annihilation and electronic integra...The magnetic properties, structure defects of electrodeposited Fe-Ni-P alloys with various compositions and the thermostability at amorphous state have been studied by DSC, positron annihilation and electronic integrating instrument methods. The results show that the thermostability of amorphous Fe-Ni-P alloys increases with Fe content. Emergence and recrystallization of stable phases defer as the P content of the coating increases. The minimum H-c, B-r and P-h occur at 9.4 P (wt pet) content. Maximum H-c, B-r and P-h occur at the weight ratio of Fe to Ni equaling to 1/9.展开更多
The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (...The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.展开更多
Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and str...Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1).展开更多
This study focuses on compositionally complex alloys(CCAs),aiming to achieve a balance between high strength and low density for new energy and aerospace applications.The composition of AlCrFeNiTi_(x) CCAs is strategi...This study focuses on compositionally complex alloys(CCAs),aiming to achieve a balance between high strength and low density for new energy and aerospace applications.The composition of AlCrFeNiTi_(x) CCAs is strategically guided by employing density functional theory and the theoretical design of thermodynamic calculations.Bulk CCAs,particularly AlCrFeNiTi_(0.25) alloy,demonstrate remarkable specific yield strength(1640.8 MPa) and 22.7% maximum strain.The incorporation of Ti facilitates the formation of lightweight and high-strength L2_(1)phase,contributing to the overall high specific strength.Synergistic effects of grain boundary strengthening,solid solution strengthening,Orowan strengthening and Peierls flow stress further enhance strength.Detailed exploration of micros tructural changes during fracture reveals the role of ordered phases in suppressing crack propagation and absorbing energy within disordered phases,thereby improving the toughness and fracture resistance of CCAs.These methods and discoveries establish a robust foundation for advancing the development of novel lightweight CCAs.展开更多
Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induce...Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induced codeposition. Effects of the bath composition, pH value, temperature and current density on the electrode position of Ni-W alloys and their composite deposits have been investigated, and the effect of heat treatment temperature on the hardness, structure and cohesive force of the amorphous Ni-W alloys and their composite deposits are also discussed. Results showed that the alloys containing more than 44 wt pct W content and the composite deposits containing 7.8 wt pct SiC content could be obtained by making use of the appropriate bath composition and plating conditions. Alloys and their composite deposits with over 44 wt pct W content show amorphous structure. The hardness of amorphous Ni-W alloys and their composite deposits increases obviously when heated, and can reach to 1350 HV and 1520 HV respectively for 46 wt pct W content. The cohesion on Cu, carbon steel and stainless steel is very good.展开更多
The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with ti...The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with time as the Al alloys infiltrate into SiCp preforms at different temperatures.The results show that infiltration of SiCp preforms by Al melt is a thermal activation process and there is an incubation period before the infiltration becomes stable.With the increase of Mg content in the Al alloys from 0wt% to 8wt%,the infiltration will become much easier,the incubation period becomes shorter and the infiltration rate is faster,but these effects are not obvious when the Mg content is higher than 8wt%.As for Si addition to the Al alloys,it has no obvious effect on the incubation period,but the infiltration rate increases markedly with the increase of Si content from 0wt% to 12wt% and the rate has no obvious change when the content is bigger than 12wt%.The effect of Mg and Si on the incubation period is related to the infiltration mechanism of Al pressureless infiltration into SiCp preforms and their impact on the infiltration rate is a combined result from viscosity and surface tension of Al melt and SiC-Al wetting ability.展开更多
Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to ...Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to improve the capacity and cycle performances of hydrogen-storage alloy electrodes, Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3-x%Mg2Ni(x=0, 5, 10, 30) composite hydrogen storage alloys prepared by two-step re-melting were investigated in this work. The influences of Mg2Ni content on the cycle stabilities were analyzed by electrochemical methods. It was observed by XRD that the main phase of all the alloys is LaNi5 and the crystal lattice parameters of LaNi5 are changed with the increasing of x value, i.e, a-axis and unit cell volume decrease and c-axis decreases nonlinearly. The c-axis of alloy with x=5 is larger than the others. With the increasing of x value, capacity retentions of the composite hydrogen storage alloys rise from 66.21% while x=0 to 82.04% while x=10, but the capacity retention of the composite alloy with 30% Mg2Ni declines because of its decreasing axial ratio. More over, the composite alloy with 5% Mg2Ni shows the best cycle stability and higher discharge capacity, and it is an appropriate candidate for battery materials.展开更多
Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) ...Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.展开更多
The program of the Division of Materials Sciences for.intermetallic materials will be surveyed. This program is carried out at Department of Energy National Laboratories and at U.S. universities. Areas of research inc...The program of the Division of Materials Sciences for.intermetallic materials will be surveyed. This program is carried out at Department of Energy National Laboratories and at U.S. universities. Areas of research include theory and material simulation, microalloying, high resolution studies of structure and composition, mechanical properties, point defects and dislocation mechanics, phase transformations, and processing. Finally, general considerations will be discussed for the future program.展开更多
A new type of lightweight AlNiLa medium entropy amorphous alloy composite ribbons(labled as MEAAC ribbons)were prepared by vacuum arc melting technology and high-speed single roller meltspinning method.The microstruct...A new type of lightweight AlNiLa medium entropy amorphous alloy composite ribbons(labled as MEAAC ribbons)were prepared by vacuum arc melting technology and high-speed single roller meltspinning method.The microstructure and thermal stability of MEAAC ribbons were examined using X-ray diffraction,differential scanning calorimeter,and scanning electron microscope.Meanwhile,the hardness and surface roughness of these ribbons were measured by Vickers microhardness tester and atomic force microscope.The potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS)were applied to investigate the corrosion behavior of these MEAAC ribbons in simulated seawater(3.5wt%NaCl corrosive solution)at room temperature.The results demonstrate that AlNiLa MEAAC ribbons in the as-received state are mainly composed of amorphous phase and intermetallic compounds.The hardness values of all melt-spun ribbons are above 310 HV_(0.1).With the increase of Al content,the linear polarization resistances of four various AlNiLa MEAAC ribbons are negligibly different numerically.It is also found that Al_(45)Ni_(27.5)La_(27.5) MEAAC ribbons have the most positive corrosion potential and the smallest corrosion current density at the same time;hence it may be a kind of potential material for metal surface protection in harsh ocean environment.展开更多
Alumina/aluminum-silicon alloy composite is manufactured by squeeze casting. The effect of the reinforcementon the morphology of the silicon phase in aluminum-silicon alloy is studied. The results indicate that an alu...Alumina/aluminum-silicon alloy composite is manufactured by squeeze casting. The effect of the reinforcementon the morphology of the silicon phase in aluminum-silicon alloy is studied. The results indicate that an alumina fiber canserve as propitious sites for the heterogeneous nucleation of the silicon phase, and the primary silicon in the compositecan nucleate on the surface of the fiber. The fiber in the composite can trigger twin during the coupled growth of thealuminum-silicon eutectic and lead to modification of the eutectic silicon near the fiber.展开更多
Alumina fiber-reinforced zinc alloy composites were manufactured by squeeze casting, and the eutectic transformation in the zinc alloy composites was studied. The results indicate that there is a fine and close interf...Alumina fiber-reinforced zinc alloy composites were manufactured by squeeze casting, and the eutectic transformation in the zinc alloy composites was studied. The results indicate that there is a fine and close interface between the fiber and the matrix, and the alloy elements can improve the combination between the fibers and the matrix in the composites. The fibers can serve as the sites of heterogeneous nucleation of the eutectic in the zinc alloy during the solidification of the composites, and the silicon on the interface between the fibers and the matrix plays a leading role during the coupled growth of the eutectic so that the eutectic transformation of the composites consists of Al-Si eutectic transformation and Zn-AI eutectic transformation.展开更多
The Ni-Cr-Mo-Cu multi-element surface alloying with the electric brushplating Ni interlayer on the low carbon steel substrate has been investigated. By theelectrochemical method in 3.5 percent (mass fraction) NaCl sol...The Ni-Cr-Mo-Cu multi-element surface alloying with the electric brushplating Ni interlayer on the low carbon steel substrate has been investigated. By theelectrochemical method in 3.5 percent (mass fraction) NaCl solution, the corrosion resistance of thecomposite alloying layer and single alloying layer is determined. The experimental results showthat the corrosion resistance of the composite alloying layer is obviously better than that of thesingle alloying layer. The structure and composition of passive films formed on the two kinds ofalloyed layers after electrochemical tests in 3.5 percent NaCl solution have been studied usingX-ray photoelectron spectroscopy (XPS). It is concluded that the double glow plasma surface alloyingof low carbon steel with the electric brush plating Ni interlayer is an appropriate technique toenhance the corrosion resistance compared with the single double glow surface alloying.展开更多
The microstructure ofthe Mg/MmNi5-x (CoAlMn )x composite hydrogen storage material preparedby the method of mechanical alloyingwas characterized by X-ray diffraction, SEM and particle size distribution analysis. By me...The microstructure ofthe Mg/MmNi5-x (CoAlMn )x composite hydrogen storage material preparedby the method of mechanical alloyingwas characterized by X-ray diffraction, SEM and particle size distribution analysis. By measuring PCTcurves, the hydrogen absorption properties of the composite was evaluated.The results show that nanocrystallinecomposite structure can be obtainedunder adequate ball milling condition. The reactive activation and hydrogen absorption capacity are improved compared with the sole MmNi5-x(CoAlMn)x alloy. The effect ofmagnesium on the microstructure andhydrogen absorption properties of thecomposite were also evaluated.展开更多
Solidification structure is a key aspect for understanding the mechanical performance of metal alloys,wherein composition and casting parameters considerably influence solidification and determine the unique microstru...Solidification structure is a key aspect for understanding the mechanical performance of metal alloys,wherein composition and casting parameters considerably influence solidification and determine the unique microstructure of the alloys.By following the principle of free energy minimization,the phase-field method eliminates the need for tracking the solid/liquid phase interface and has greatly accelerated the research and development efforts geared toward optimizing metal solidification microstructures.The recent progress in the application of phasefield simulation to investigate the effect of alloy composition and casting process parameters on the solidification structure of metals is summarized in this review.The effects of several typical elements and process parameters,including carbon,boron,silicon,cooling rate,pulling speed,scanning speed,anisotropy,and gravity,on the solidification structure are discussed.The present work also addresses the future prospects of phase-field simulation and aims to facilitate the widespread applications of phase-field approaches in the simulation of microstructures during solidification.展开更多
Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing comp...Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing composites of cementitious and at present many researchers are focusing on use of FAC as filler in polymer and metals.In this paper,the systematic review on research activities and application of FAC in manufacturing light weight products are done.The influence of FAC on the physical and mechanical properties of incorporated polymer and alloy-based composites were summarized.Prospects of future for its use were also suggested and summarized in this paper.展开更多
The superplasticity of an Al203p/6061Al composite, fabricated by powder metallurgy techniques, has been investigated. Instead of any special thermomechanical processing or hot rolling, simple ...The superplasticity of an Al203p/6061Al composite, fabricated by powder metallurgy techniques, has been investigated. Instead of any special thermomechanical processing or hot rolling, simple hot extrusion has been employed to obtain a fine grained structure before superplastic testing. Superplastic tensile tests were performed at strain rates ranging from 10-2 to 10-4 s-1 and at temperatures from 833 to 893 K. A maximum elongation of 200% was achieved at a temperature of 853 K and an initial strain rate of 1.67×103 s-1. The highest value obtained for the strain rate sensitivity index (in) was 0.32. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that no liquid phase existed where maximum elongation was achieved and deformation took place entirely in the solid state.展开更多
This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by ...This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by reducing the size of theγ′phase;(2)key alloy composition control to strengthen the heterostructureγ/γ′interfaces.This strategy proved very effective by the designed three superalloys'prolonged creep lives.An alloy exhibits ultra-long creep life by 388 h at 1100°C/137 MPa,which runs at the highest level among those alloys without Ru addition.With Ru addition,an alloy that lasted for 748 h with a creep strain of~6%at 1110°C/137 MPa is developed.This study provides a new route of high-temperature creep lives through heterostructure interfacial design with size effects and key alloying elements.展开更多
基金the financial support of the National Natural Science Foundation of China(No.:52171026)Beijing Natural Science Foundation(No.:2242043).
文摘Additive Manufacturing(AM)is revolutionizing aerospace,transportation,and biomedical sectors with its potential to create complex geometries.However,the metallic materials currently used in AM are not intended for high-energy beam processes,suggesting performance improvement.The development of materials for AM still faces challenge because of the inefficient trial-and-error conventional methods.This review examines the challenges and current state of materials including aluminum alloys,titanium alloys,superalloys,and high-entropy alloys(HEA)in AM,and summarizes the high-throughput methods in alloy development for AM.In addition,the advantages of high-throughput preparation technology in improving the properties and optimizing the microstructure mechanism of major additive manufacturing alloys are described.This article concludes by emphasizing the importance of high-throughput techniques in pushing the boundaries of AM materials development,pointing toward a future of more effective and innovative material solutions.
基金Funded by the Foundation for Department of Science and Technology of Jiangxi Province (No.ZDG03800)the Foundation for Department of Education of Jiangxi Province(No.GJJ11579)
文摘A series of Ni-Fe-Ga alloys near the prototype Heusler composition (X2YZ) were prepared through arc-melting suction-casting method. The dependences of the transformation behavior on the alloy composition and annealing treatment were studied in detail by an optical microscope, X-ray diffraction, and differential scanning calorimeters methods. The experimental results show that the martensitic transformation temperatures increase almost linearly with increasing Ni content in all the NiFeGa alloys. Annealing the Ni55.5Fe18Ga26.5 alloy at 100-500 ℃ for 3 h and at 300 ℃ for 1-10 h shifts the martensitic transformation start temperature by almost 20 ℃ to high temperature. The variations in the martensitic transformation temperatures in these alloys are discussed in terms of structural differences resulting from alloy composition and annealing treatment.
文摘The magnetic properties, structure defects of electrodeposited Fe-Ni-P alloys with various compositions and the thermostability at amorphous state have been studied by DSC, positron annihilation and electronic integrating instrument methods. The results show that the thermostability of amorphous Fe-Ni-P alloys increases with Fe content. Emergence and recrystallization of stable phases defer as the P content of the coating increases. The minimum H-c, B-r and P-h occur at 9.4 P (wt pet) content. Maximum H-c, B-r and P-h occur at the weight ratio of Fe to Ni equaling to 1/9.
基金Project(51312JQ08)supported by the Pre-Research Foundation of China General Equipment DepartmentProject(NBPJ2013-4)supported by the Postdoctoral Science Foundation of Ningbo Branch of China Academy of Ordnance Science+1 种基金Project(bsh1402073)supported by the Postdoctoral Science Foundation of Zhejiang Province,ChinaProject(2014A610051)supported by the Ningbo Natural Science Foundation of China
文摘The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.
基金Project(2012AA030311)supported by the National High-tech Research and Development Program of ChinaProject(51421001)supported by the National Natural Science Foundation of ChinaProject(106112015CDJXY130002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1).
基金financially supported by Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515012626)Shenzhen Knowledge Innovation Plan-Fundamental Research (Discipline Distribution) (No. JCYJ20180507184623297)+1 种基金the National Natural Science Foundation of China (No.52301043)the Postdoctoral Research Startup Expenses of Shenzhen (No.NA25501001)。
文摘This study focuses on compositionally complex alloys(CCAs),aiming to achieve a balance between high strength and low density for new energy and aerospace applications.The composition of AlCrFeNiTi_(x) CCAs is strategically guided by employing density functional theory and the theoretical design of thermodynamic calculations.Bulk CCAs,particularly AlCrFeNiTi_(0.25) alloy,demonstrate remarkable specific yield strength(1640.8 MPa) and 22.7% maximum strain.The incorporation of Ti facilitates the formation of lightweight and high-strength L2_(1)phase,contributing to the overall high specific strength.Synergistic effects of grain boundary strengthening,solid solution strengthening,Orowan strengthening and Peierls flow stress further enhance strength.Detailed exploration of micros tructural changes during fracture reveals the role of ordered phases in suppressing crack propagation and absorbing energy within disordered phases,thereby improving the toughness and fracture resistance of CCAs.These methods and discoveries establish a robust foundation for advancing the development of novel lightweight CCAs.
文摘Ni-W alloys and their composite deposits are electroplated on the metals when an appropriate complex agent is selected on the base of the theories of electrochemistry and complex chemistry, and the principle of induced codeposition. Effects of the bath composition, pH value, temperature and current density on the electrode position of Ni-W alloys and their composite deposits have been investigated, and the effect of heat treatment temperature on the hardness, structure and cohesive force of the amorphous Ni-W alloys and their composite deposits are also discussed. Results showed that the alloys containing more than 44 wt pct W content and the composite deposits containing 7.8 wt pct SiC content could be obtained by making use of the appropriate bath composition and plating conditions. Alloys and their composite deposits with over 44 wt pct W content show amorphous structure. The hardness of amorphous Ni-W alloys and their composite deposits increases obviously when heated, and can reach to 1350 HV and 1520 HV respectively for 46 wt pct W content. The cohesion on Cu, carbon steel and stainless steel is very good.
基金supported by the National Natural Science Foundation of China (No.51004010)the Research Fund for the Doctoral Program of Higher Education of China (No.20090006120022)
文摘The effect of Mg and Si additon to Al matrix on infiltration kinetics and rates of Al alloys pressureless infiltration into porous SiCp preform was investigated by observing the change of infiltration distance with time as the Al alloys infiltrate into SiCp preforms at different temperatures.The results show that infiltration of SiCp preforms by Al melt is a thermal activation process and there is an incubation period before the infiltration becomes stable.With the increase of Mg content in the Al alloys from 0wt% to 8wt%,the infiltration will become much easier,the incubation period becomes shorter and the infiltration rate is faster,but these effects are not obvious when the Mg content is higher than 8wt%.As for Si addition to the Al alloys,it has no obvious effect on the incubation period,but the infiltration rate increases markedly with the increase of Si content from 0wt% to 12wt% and the rate has no obvious change when the content is bigger than 12wt%.The effect of Mg and Si on the incubation period is related to the infiltration mechanism of Al pressureless infiltration into SiCp preforms and their impact on the infiltration rate is a combined result from viscosity and surface tension of Al melt and SiC-Al wetting ability.
基金Project Supported bythe Talents Development Foundation of Inner Mongolia Autonomous Region (200608)
文摘Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3 alloy has high chemical activity and favorable plateaus pressure. Mg2Ni is in favor of high hydrogen storage capacity and low weight, but it is difficult to be activated. In order to improve the capacity and cycle performances of hydrogen-storage alloy electrodes, Mm0.3Ml0.7Ni3.55Co0.75Mn0.4-Al0.3-x%Mg2Ni(x=0, 5, 10, 30) composite hydrogen storage alloys prepared by two-step re-melting were investigated in this work. The influences of Mg2Ni content on the cycle stabilities were analyzed by electrochemical methods. It was observed by XRD that the main phase of all the alloys is LaNi5 and the crystal lattice parameters of LaNi5 are changed with the increasing of x value, i.e, a-axis and unit cell volume decrease and c-axis decreases nonlinearly. The c-axis of alloy with x=5 is larger than the others. With the increasing of x value, capacity retentions of the composite hydrogen storage alloys rise from 66.21% while x=0 to 82.04% while x=10, but the capacity retention of the composite alloy with 30% Mg2Ni declines because of its decreasing axial ratio. More over, the composite alloy with 5% Mg2Ni shows the best cycle stability and higher discharge capacity, and it is an appropriate candidate for battery materials.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘Anodized composite films containing Si C nanoparticles were synthesized on Ti6Al4 V alloy by anodic oxidation procedure in C4O6H4Na2 electrolyte. Scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS) and X-ray photoelectron spectroscopy(XPS) were employed to characterize the morphology and composition of the films fabricated in the electrolytes with and without addition of Si C nanoparticles. Results show that Si C particles can be successfully incorporated into the oxide film during the anodizing process and preferentially concentrate within internal cavities and micro-cracks. The ball-on-disk sliding tests indicate that Si C-containing oxide films register much lower wear rate than the oxide films without Si C under dry sliding condition. Si C particles are likely to melt and then are oxidized by frictional heat during sliding tests. Potentiodynamic polarization behavior reveals that the anodized alloy with Si C nanoparticles results in a reduction in passive current density to about 1.54×10-8 A/cm2, which is more than two times lower than that of the Ti O2 film(3.73×10-8 A/cm2). The synthesized composite film has good anti-wear and anti-corrosion properties and the growth mechanism of nanocomposite film is also discussed.
文摘The program of the Division of Materials Sciences for.intermetallic materials will be surveyed. This program is carried out at Department of Energy National Laboratories and at U.S. universities. Areas of research include theory and material simulation, microalloying, high resolution studies of structure and composition, mechanical properties, point defects and dislocation mechanics, phase transformations, and processing. Finally, general considerations will be discussed for the future program.
基金by the National Key R&D Program of China(No.2018YFC1902400)the National Natural Science Foundation of China(No.51975582)the Natural Science Foundation of Beijing,China(No.2212055)。
文摘A new type of lightweight AlNiLa medium entropy amorphous alloy composite ribbons(labled as MEAAC ribbons)were prepared by vacuum arc melting technology and high-speed single roller meltspinning method.The microstructure and thermal stability of MEAAC ribbons were examined using X-ray diffraction,differential scanning calorimeter,and scanning electron microscope.Meanwhile,the hardness and surface roughness of these ribbons were measured by Vickers microhardness tester and atomic force microscope.The potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS)were applied to investigate the corrosion behavior of these MEAAC ribbons in simulated seawater(3.5wt%NaCl corrosive solution)at room temperature.The results demonstrate that AlNiLa MEAAC ribbons in the as-received state are mainly composed of amorphous phase and intermetallic compounds.The hardness values of all melt-spun ribbons are above 310 HV_(0.1).With the increase of Al content,the linear polarization resistances of four various AlNiLa MEAAC ribbons are negligibly different numerically.It is also found that Al_(45)Ni_(27.5)La_(27.5) MEAAC ribbons have the most positive corrosion potential and the smallest corrosion current density at the same time;hence it may be a kind of potential material for metal surface protection in harsh ocean environment.
文摘Alumina/aluminum-silicon alloy composite is manufactured by squeeze casting. The effect of the reinforcementon the morphology of the silicon phase in aluminum-silicon alloy is studied. The results indicate that an alumina fiber canserve as propitious sites for the heterogeneous nucleation of the silicon phase, and the primary silicon in the compositecan nucleate on the surface of the fiber. The fiber in the composite can trigger twin during the coupled growth of thealuminum-silicon eutectic and lead to modification of the eutectic silicon near the fiber.
文摘Alumina fiber-reinforced zinc alloy composites were manufactured by squeeze casting, and the eutectic transformation in the zinc alloy composites was studied. The results indicate that there is a fine and close interface between the fiber and the matrix, and the alloy elements can improve the combination between the fibers and the matrix in the composites. The fibers can serve as the sites of heterogeneous nucleation of the eutectic in the zinc alloy during the solidification of the composites, and the silicon on the interface between the fibers and the matrix plays a leading role during the coupled growth of the eutectic so that the eutectic transformation of the composites consists of Al-Si eutectic transformation and Zn-AI eutectic transformation.
文摘The Ni-Cr-Mo-Cu multi-element surface alloying with the electric brushplating Ni interlayer on the low carbon steel substrate has been investigated. By theelectrochemical method in 3.5 percent (mass fraction) NaCl solution, the corrosion resistance of thecomposite alloying layer and single alloying layer is determined. The experimental results showthat the corrosion resistance of the composite alloying layer is obviously better than that of thesingle alloying layer. The structure and composition of passive films formed on the two kinds ofalloyed layers after electrochemical tests in 3.5 percent NaCl solution have been studied usingX-ray photoelectron spectroscopy (XPS). It is concluded that the double glow plasma surface alloyingof low carbon steel with the electric brush plating Ni interlayer is an appropriate technique toenhance the corrosion resistance compared with the single double glow surface alloying.
文摘The microstructure ofthe Mg/MmNi5-x (CoAlMn )x composite hydrogen storage material preparedby the method of mechanical alloyingwas characterized by X-ray diffraction, SEM and particle size distribution analysis. By measuring PCTcurves, the hydrogen absorption properties of the composite was evaluated.The results show that nanocrystallinecomposite structure can be obtainedunder adequate ball milling condition. The reactive activation and hydrogen absorption capacity are improved compared with the sole MmNi5-x(CoAlMn)x alloy. The effect ofmagnesium on the microstructure andhydrogen absorption properties of thecomposite were also evaluated.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3702401)the National Natural Science Foundation of China(Nos.51901013,52122408,52071023)+3 种基金financial support from the Fundamental Research Funds for the Central Universities,China(University of Science and Technology Beijing(USTB),Nos.FRF-TP-2021-04C1,06500135)financial support from the Qilu Young Talent Program of Shandong University,Zhejiang Lab Open Research Project,China(No.K2022PE0AB05)the Shandong Provincial Natural Science Foundation,China(No.ZR2023MA058)the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515011819)。
文摘Solidification structure is a key aspect for understanding the mechanical performance of metal alloys,wherein composition and casting parameters considerably influence solidification and determine the unique microstructure of the alloys.By following the principle of free energy minimization,the phase-field method eliminates the need for tracking the solid/liquid phase interface and has greatly accelerated the research and development efforts geared toward optimizing metal solidification microstructures.The recent progress in the application of phasefield simulation to investigate the effect of alloy composition and casting process parameters on the solidification structure of metals is summarized in this review.The effects of several typical elements and process parameters,including carbon,boron,silicon,cooling rate,pulling speed,scanning speed,anisotropy,and gravity,on the solidification structure are discussed.The present work also addresses the future prospects of phase-field simulation and aims to facilitate the widespread applications of phase-field approaches in the simulation of microstructures during solidification.
文摘Fly Ash Cenospheres(FACs)are obtained from the coal power plants in the form of hollow spherical particles by burning the coal.FAC was started to use in early 1980-1985 as lightweight filler material in producing composites of cementitious and at present many researchers are focusing on use of FAC as filler in polymer and metals.In this paper,the systematic review on research activities and application of FAC in manufacturing light weight products are done.The influence of FAC on the physical and mechanical properties of incorporated polymer and alloy-based composites were summarized.Prospects of future for its use were also suggested and summarized in this paper.
基金This work was supported by the National Natural Science Foundation of China,under grant No.59781004.
文摘The superplasticity of an Al203p/6061Al composite, fabricated by powder metallurgy techniques, has been investigated. Instead of any special thermomechanical processing or hot rolling, simple hot extrusion has been employed to obtain a fine grained structure before superplastic testing. Superplastic tensile tests were performed at strain rates ranging from 10-2 to 10-4 s-1 and at temperatures from 833 to 893 K. A maximum elongation of 200% was achieved at a temperature of 853 K and an initial strain rate of 1.67×103 s-1. The highest value obtained for the strain rate sensitivity index (in) was 0.32. Differential scanning calorimeter was used to ascertain the possibility of any partial melting in the vicinity of optimum superplastic temperature. These results suggested that no liquid phase existed where maximum elongation was achieved and deformation took place entirely in the solid state.
基金supported by the National Key Research and Development Program of China(2021YFA1200201)the Natural Science Foundation of China(91860202,51988101,52171001,52071003 and 52001297)+3 种基金the R&D Program of Beijing Municipal Education Commission(KM202210005003)the Beijing Outstanding Young Scientists Projects(BJJWZYJH01201910005018)the Beijing Nova Program(Z211100002121170)the Overseas Expertise Introduction Project for Discipline Innovation(“111”project)(DB18015)
文摘This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by reducing the size of theγ′phase;(2)key alloy composition control to strengthen the heterostructureγ/γ′interfaces.This strategy proved very effective by the designed three superalloys'prolonged creep lives.An alloy exhibits ultra-long creep life by 388 h at 1100°C/137 MPa,which runs at the highest level among those alloys without Ru addition.With Ru addition,an alloy that lasted for 748 h with a creep strain of~6%at 1110°C/137 MPa is developed.This study provides a new route of high-temperature creep lives through heterostructure interfacial design with size effects and key alloying elements.