The Swift effect of Mg alloy is sensitive to initial texture.However,dislocation slip is the main deformation mechanism during torsion of Mg alloy.The underlying relation of Swift effect and dislocation slip is still ...The Swift effect of Mg alloy is sensitive to initial texture.However,dislocation slip is the main deformation mechanism during torsion of Mg alloy.The underlying relation of Swift effect and dislocation slip is still not clarified.The effect of stress state and pre-straining on Swift effect was studied experimentally during free-end torsion for an extruded AZ31 alloy.The free-end torsion was performed with axial tension and compression stress which is lower than yield stress.It is found that the transition of axial deformation from contraction to elongation occurs when the axial stress changes from negative to positive.The pre-dislocations introduced by pre-tension promote axial shortening during torsion.While the pre-twins introduced by pre-compression are inhibition of axial shortening.The change of axial deformation is attributed to competition between twinning and prismatic slip.The axial shortening of extruded Mg alloy is generated by tensile twinning leading to c-axis strain.In contrast,the axial elongation can be generated by the activation of prismatic slip.The magnitude of axial strain generated by twinning is larger than that by prismatic slip.Moreover,the occurrence of detwinning results in axial elongation at low shear strain.展开更多
The influences of Ca and Ce/La microalloying on the microstructure evolution and bio-corrosion resistances of extruded Mg-Zn alloys have been systematically investigated in the current study.Compared with single Ca or...The influences of Ca and Ce/La microalloying on the microstructure evolution and bio-corrosion resistances of extruded Mg-Zn alloys have been systematically investigated in the current study.Compared with single Ca or Ce/La addition,the Ca-Ce/La cooperative microalloying results in an outstanding grain refinement,because the fine secondary phase particles effectively hinder the recrystallized grain growth.The coarse Ca2Mg6Zn3 phases promote the formation of Ca3(PO4)2 or hydroxyapatite particles during the immersion process and accelerate the dissolution of the corrosion product film,which destroys its integrity and results in the deterioration of anti-corrosive performance.The Ce/La elements can be dispersed within the conventional Mg7Zn3 phases,which reduce the internal galvanic corrosion between Mg matrix and the secondary phases,leading to an obvious improvement of corrosion resistance.Therefore,the Ca-Ce/La cooperative microalloying achieves a homogenous fine-grained microstructure and improves the protective ability of surface film,which will pave a new avenue for the design of biomedical Mg alloys in the coming future.展开更多
To assess the effect of strain and strain rate on texture evolution of an extruded Mg–6Al–3Zn alloy,compression tests were carried out.Samples were prepared in the extrusion direction(ED)and normal direction(ND).The...To assess the effect of strain and strain rate on texture evolution of an extruded Mg–6Al–3Zn alloy,compression tests were carried out.Samples were prepared in the extrusion direction(ED)and normal direction(ND).The compression tests were performed at 250℃ and with different strain rates of 0.01 sec−1 and 1 sec−1 and different strains.Microstructural observation and texture investigation show that at early stages of deformation,extension twins lead to the development of strong basal texture intensity along rolling direction(RD)in ED samples and contraction twins result in texture evolution along transverse direction(TD)in ND samples.Also,microstructural investigation at high strains reveals that dynamic recrystallization occurs in both samples and consequently the basal texture intensity has been decreased.展开更多
For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical prope...For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.展开更多
This article mainly discussed bulk material lHvl^ared by powder metallurgy, and the commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy powder (both produced by argon gas atomization process) we...This article mainly discussed bulk material lHvl^ared by powder metallurgy, and the commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy powder (both produced by argon gas atomization process) were ball-milled for different hours. The prepared powder was consolidated by hot extrusion method. The microstruetures of the milled powder and bulk alloy were examined by X - Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The thermal stability was tested by differential scanning calorimetry (DSC). Mechanical properties of the extruded alloy were examined by Vickers hardness tester and mechanical testing machine. The results show that after milling, the mixed particle sizes and microstructures of the alloy powder change obviously. The compressive strength of the extruded alloy has reached 580 MPa under certain conditions of milling time and composition.展开更多
Phase transformation and microstructural change of an extruded eutectoid Zn-Al alloy Zn76Al22Cu2 (wt pct) were investigated during creep testing by using SEM and X-ray diffraction techniques. Creep induced decompositi...Phase transformation and microstructural change of an extruded eutectoid Zn-Al alloy Zn76Al22Cu2 (wt pct) were investigated during creep testing by using SEM and X-ray diffraction techniques. Creep induced decomposition of a metastable η'T phase and a four phase transformation, α+ ε →T' +η, occurred during the creep testing. Also a microstructural change was observed from a lamellar structure into a spheroidized structure in the rupture part of the extruded alloy. It provided evidence of creep induced phase transformations which occurred in ageing process. The mechanism of creep rupture of the extruded Zn-Al alloy was also discussed.展开更多
A yield phenomenon was firstly reported in an extruded Mg-6.8Y-2.5Cu alloy and the corresponding microstructure was also investigated in this work,The cast alloy is mainly composed ofα-Mg,18R long period stacking ord...A yield phenomenon was firstly reported in an extruded Mg-6.8Y-2.5Cu alloy and the corresponding microstructure was also investigated in this work,The cast alloy is mainly composed ofα-Mg,18R long period stacking order(LPSO)phase,eutectic phase(Mg_(20)Cu_(4)Y_(1)),and Mg_(2)Cu phase.The 18R LPSO phase at the dendritic grain boundary transforms into the 14H LPSO phase in the grain interior during homogenization.After extrusion,the grain size of the homogenized alloy is remarkably refined to-3.69μm and the second phase is significantly broken and distributed in the extrusion direction.Tensile testing curves of the extrude alloy at room temperature indicate that the yield strength and ultimate tensile strength increase while the elongation of the alloy decreases with increasing strain rate.Interestingly,a yield plateau fo rms and gradually decreases with increasing strain rate.The yield phenomenon is related to the dislocation multiplication and the interaction between the movable dislocations and solute atoms.展开更多
基金Financial support from the projects by the NSFC(51771166)the Hebei Natural Science Foundation(E2019203452,E2021203011)+4 种基金the central government guiding local science and technology development(216Z1001G)the talent project of human resources and social security department of Hebei province(A202002002)the key project of department of education of Hebei province(ZD2021107)Graduate Innovation Program of Hebei province(CXZZBS2020053)The work was supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2020-013).
文摘The Swift effect of Mg alloy is sensitive to initial texture.However,dislocation slip is the main deformation mechanism during torsion of Mg alloy.The underlying relation of Swift effect and dislocation slip is still not clarified.The effect of stress state and pre-straining on Swift effect was studied experimentally during free-end torsion for an extruded AZ31 alloy.The free-end torsion was performed with axial tension and compression stress which is lower than yield stress.It is found that the transition of axial deformation from contraction to elongation occurs when the axial stress changes from negative to positive.The pre-dislocations introduced by pre-tension promote axial shortening during torsion.While the pre-twins introduced by pre-compression are inhibition of axial shortening.The change of axial deformation is attributed to competition between twinning and prismatic slip.The axial shortening of extruded Mg alloy is generated by tensile twinning leading to c-axis strain.In contrast,the axial elongation can be generated by the activation of prismatic slip.The magnitude of axial strain generated by twinning is larger than that by prismatic slip.Moreover,the occurrence of detwinning results in axial elongation at low shear strain.
基金the National Natural Science Foundation(Grant nos.5177117&51671152 and 51874225)the Key Research and Development Program of Shanxi Province(Grant nos.2020KWZ-007 and 2018ZDXMGY-149)the Youth Innovation Team of Shanxi Universities and the Natural Science Foundation of Jilin Province(Grant no.20180414016GH).
文摘The influences of Ca and Ce/La microalloying on the microstructure evolution and bio-corrosion resistances of extruded Mg-Zn alloys have been systematically investigated in the current study.Compared with single Ca or Ce/La addition,the Ca-Ce/La cooperative microalloying results in an outstanding grain refinement,because the fine secondary phase particles effectively hinder the recrystallized grain growth.The coarse Ca2Mg6Zn3 phases promote the formation of Ca3(PO4)2 or hydroxyapatite particles during the immersion process and accelerate the dissolution of the corrosion product film,which destroys its integrity and results in the deterioration of anti-corrosive performance.The Ce/La elements can be dispersed within the conventional Mg7Zn3 phases,which reduce the internal galvanic corrosion between Mg matrix and the secondary phases,leading to an obvious improvement of corrosion resistance.Therefore,the Ca-Ce/La cooperative microalloying achieves a homogenous fine-grained microstructure and improves the protective ability of surface film,which will pave a new avenue for the design of biomedical Mg alloys in the coming future.
文摘To assess the effect of strain and strain rate on texture evolution of an extruded Mg–6Al–3Zn alloy,compression tests were carried out.Samples were prepared in the extrusion direction(ED)and normal direction(ND).The compression tests were performed at 250℃ and with different strain rates of 0.01 sec−1 and 1 sec−1 and different strains.Microstructural observation and texture investigation show that at early stages of deformation,extension twins lead to the development of strong basal texture intensity along rolling direction(RD)in ED samples and contraction twins result in texture evolution along transverse direction(TD)in ND samples.Also,microstructural investigation at high strains reveals that dynamic recrystallization occurs in both samples and consequently the basal texture intensity has been decreased.
基金The authors would like to acknowledge the financial support from the National Key Basic Research Program(973 Program),Project(2013CB632205).
文摘For the purpose of investigating the dynamic deformational behavior and failure mechanisms of magnesium under high strain rates,the Split Hopkinson Pressure Bar(SHPB)was used for investigating dynamic mechanical properties of extruded Mg-Gd-Y Magnesium alloy at ambient temperature(300 K),200℃(473 K)and 300℃(573 K)temperature.The samples after compression were analyzed by scanning electron microscope(SEM)and metallographic microscope.Dynamic mechanical properties,crack performance and plastic deformation mechanism of extruded Mg-Gd-Y Magnesium alloy along the extrusion direction(ED)were discussed.The results show that,extruded Mg-Gd-Y Magnesium alloy has the largest dynamic compressive strength which is 535 MPa at ambient temperature(300 K)and strain rate of 2826 s^(−1).When temperature increases,dynamic compressive strength decreases,while ductility increases.The dynamic compression fracture mechanism of extruded Mg-Gd-Y Magnesium alloy is multi-crack propagation and intergranular quasi-cleavage fracture at both ambient temperature and high temperature.The dynamic compressive deformation mechanism of extruded Mg-Gd-Y Magnesium alloy is a combination of twinning,slipping and dynamic recrystallization at both ambient temperature and high temperature.
文摘This article mainly discussed bulk material lHvl^ared by powder metallurgy, and the commercial 2024 aluminum alloy powder and FeNiCrCoA13 high entropy alloy powder (both produced by argon gas atomization process) were ball-milled for different hours. The prepared powder was consolidated by hot extrusion method. The microstruetures of the milled powder and bulk alloy were examined by X - Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The thermal stability was tested by differential scanning calorimetry (DSC). Mechanical properties of the extruded alloy were examined by Vickers hardness tester and mechanical testing machine. The results show that after milling, the mixed particle sizes and microstructures of the alloy powder change obviously. The compressive strength of the extruded alloy has reached 580 MPa under certain conditions of milling time and composition.
文摘Phase transformation and microstructural change of an extruded eutectoid Zn-Al alloy Zn76Al22Cu2 (wt pct) were investigated during creep testing by using SEM and X-ray diffraction techniques. Creep induced decomposition of a metastable η'T phase and a four phase transformation, α+ ε →T' +η, occurred during the creep testing. Also a microstructural change was observed from a lamellar structure into a spheroidized structure in the rupture part of the extruded alloy. It provided evidence of creep induced phase transformations which occurred in ageing process. The mechanism of creep rupture of the extruded Zn-Al alloy was also discussed.
基金Project supported by the National Natural Science Foundation of China(51961021,52001152 and 51901174)China Postdoctoral Science Foundation(2020M673383)。
文摘A yield phenomenon was firstly reported in an extruded Mg-6.8Y-2.5Cu alloy and the corresponding microstructure was also investigated in this work,The cast alloy is mainly composed ofα-Mg,18R long period stacking order(LPSO)phase,eutectic phase(Mg_(20)Cu_(4)Y_(1)),and Mg_(2)Cu phase.The 18R LPSO phase at the dendritic grain boundary transforms into the 14H LPSO phase in the grain interior during homogenization.After extrusion,the grain size of the homogenized alloy is remarkably refined to-3.69μm and the second phase is significantly broken and distributed in the extrusion direction.Tensile testing curves of the extrude alloy at room temperature indicate that the yield strength and ultimate tensile strength increase while the elongation of the alloy decreases with increasing strain rate.Interestingly,a yield plateau fo rms and gradually decreases with increasing strain rate.The yield phenomenon is related to the dislocation multiplication and the interaction between the movable dislocations and solute atoms.