Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport....Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport. By incorporating these counteracting driving forces in a phase-averaged manner, the theoretically-based quasi-steady formula of Wang (2007) is modified to predict the magnitude and direction of net cross-shore total load transport under the coaction of wave and current. The predictions show an excellent agreement with the measurement data on medium and fine sand collected by Dohmen-Janssen and Hanes (2002) and Schretlen (2012) in a full-scale wave flume at the Coastal Research Centre in Hannover, Germany. The modified formula can predict the net onshore transport of fine sand in sheet flows. In particular, it can predict the net offshore transport of medium sand in rippled beds through enlarged bed roughness, as well as the net offshore transport of fine-to-coarse sand in sheet flows with the aid of a new criterion to judge the occurrence of net offshore transport.展开更多
Multiple nitrate transporter(NRT)genes exist in the genome of bread wheat,and it is of great importance to identify the elite NRT genes for N-efficient wheat cultivar breeding.A candidate gene association study(CGAS)o...Multiple nitrate transporter(NRT)genes exist in the genome of bread wheat,and it is of great importance to identify the elite NRT genes for N-efficient wheat cultivar breeding.A candidate gene association study(CGAS)of six N use efficiency(NUE)related traits(grain N concentration(GNC),straw N concentration(SNC),grain yield(GY),grain N accumulation(GNA),shoot total N accumulation(STN)and N harvest index(NHI))was performed based on SNPs in 46 NRT2 genes using a panel composed of 286 wheat cultivars.CGAS identified TaNRT2.1-6B as an elite NRT gene that is significantly associated with four(NHI,SNC,GNA and GY)of the six NUE-related traits simultaneously.TaNRT2.1-6B is located on the plasma membrane and acts as a dual-affinity NRT.The overexpression of TaNRT2.1-6B increased the N influx and root growth of wheat,whereas gene silence lines resulted in the opposite effects.The overexpression of TaNRT2.1-6B also improved GY and N accumulation of wheat under either limited or sufficient N conditions.The data provide the TaNRT2.1-6B gene and the two associated SNP markers as promising powerful tools for breeding wheat cultivars with high N uptake ability and NUE.展开更多
In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, w...In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A dis- crete-fracture model is used to simplify the fracture mod- cling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure.展开更多
Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layer...Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layers to passivate the surface defects.In this study,the aromatic solvent with different substituent groups was used to regulate the conformation of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)am ine](PTAA)layer.As a result,the single-junction perovskite solar cell(PSC)gained a power conversion efficiency(PCE)of 20.63%,contributing to a 27.21%efficiency for monolithic perovskite/silicon(double-side polished)2-terminal tandem solar cell,by applying the alkyl aromatic solvent to enhance theπ-πstacking of PTAA molecular chains.The tandem solar cell can maintain 95%initial efficiency after aging over 1000 h.This study provides a universal approach for improving the photovoltaic performance of NiO_(x)/polymer-based perovskite/silicon tandem solar cells and other single junction inverted PSCs.展开更多
Objective:To observe the changes in insulin resistance in patients with gestational diabetes mellitus(GDM)based on the detection of serum microRNA-372-3p and glucose transporter protein 4(GLUT4)levels.Methods:We condu...Objective:To observe the changes in insulin resistance in patients with gestational diabetes mellitus(GDM)based on the detection of serum microRNA-372-3p and glucose transporter protein 4(GLUT4)levels.Methods:We conducted a retrospective cohort study of 42 patients who were diagnosed with GDM and hospitalized in our hospital during the period from January 2017 to December 2021 and another 42 patients who had normal pregnancy during the same period by collecting their clinical data.We analyzed their serum microRNA expression profiles and miR-372-3p levels to study the relationship between GDM and insulin resistance.Results:The relative expression of miR-372-3p in the serum of patients in the GDM group was significantly higher than that of patients in the control group,but the GLUT 4 level of the GDM group was significantly lower than that of the control group(P<0.05).Compared with the control group,the GDM group had significantly higher levels of fasting blood glucose(FBG),fasting insulin(FINS),2-hour postprandial blood glucose(2h-BG),total cholesterol(TC),triglyceride(TG),and homeostatic model assessment for insulin resistance(HOMA-IR)index but significantly lower homeostasis model assessment ofβ-cell function(HOMA-β)index(P<0.05).The relative expression of miR-372-3p in serum was independently and positively correlated with HOMA-IR,while the level of GLUT4 was independently and negatively correlated with HOMA-IR(P<0.05).Conclusion:Glycosylated hemoglobin test in the early stages of pregnancy(12–13 weeks of gestation)is important to ensure the health of pregnant women and fetuses.The screening and intervention for elevated glucose in pregnant women act as a guideline for the treatment of GDM.Patients with insulin resistance and related complications such as hyperinsulinemia and hypoglycemia should be given priority.展开更多
AIM To investigate the effect of Hemp seed soft capsule(HSCC) on colonic ion transport and its related mechanisms in constipation rats.METHODS Sprague-Dawley male rats were randomly divided into three groups: normal g...AIM To investigate the effect of Hemp seed soft capsule(HSCC) on colonic ion transport and its related mechanisms in constipation rats.METHODS Sprague-Dawley male rats were randomly divided into three groups: normal group, constipation group and HSSC group. Rats in the constipation and HSSC groups were administrated loperamide 3 mg/kg per day orally for 12 d to induce the constipation model. Then, the HSSC group was given HSSC 0.126 g/kg per day by gavage for 7 d. The normal and constipation groups were treated with distilled water. After the treatment, the fecal wet weight and water content were measured. The basal short-circuit current(Isc) and resistance were measured by an Ussing Chamber. Besides the in vivo drug delivery experiment above, an in vitro drug application experiment was also conducted. The accumulative concentrations of HSSC(0.1 mg/m L, 0.5 mg/m L, 1.0 mg/m L, 2.5 mg/m L, 5.0 mg/m L, 10.0 mg/m L and 25.0 mg/m L) were added to the normal isolatedcolonic mucosa and the Isc was recorded. Further, after the application of either ion(Cl^-or HCO_3^-) substitution, ion channel-related inhibitor(N-phenylanthranilic acid, glybenclamide, 4,4-diisothiocyano-2,2-stilbenedisulfonic acid or bumetanide) or neural pathway inhibitor [tetrodotoxin(TTX), atropine, or hexamethonium], the Isc induced by HSSC was also measured. RESULTS In the constipation group, the fecal wet weight and the water content were decreased in comparison with the normal group(P < 0.01). After the treatment with HSSC, the fecal wet weight and the water content in the HSSC group were increased, compared with the constipation group(P < 0.01). In the constipation group, the basal Isc was decreased and resistance was increased, in comparison with the normal group(P < 0.01). After the treatment with HSSC, the basal Isc was increased(P < 0.05) and resistance was decreased(P < 0.01) in the HSSC group compared with the constipation group. In the in vitro experiment, beginning with the concentration of 1.0 mg/m L, differences in Isc were found between the experimental mucosa(with HSSC added) and control mucosa. The Isc of experimental mucosa was higher than that of control mucosa under the same concentration(1.0 mg/m L, P < 0.05; 2.5-25 mg/m L, P < 0.01). After the Cl^-or HCO_3^-removal and pretreated with different inhibitors(c AMPdependent and Ca^(2+)-dependent Cl^-channels, Na^+-K^+-2 Cl^-cotransporter(NKCC), Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger inhibitor), there were differences between experimental mucosa and control mucosa; the Isc of experimental mucosa was lower than that of control mucosa under the same concentration(P < 0.05). Meanwhile, after pretreatment with neural pathway inhibitor(TTX, atropine, or hexamethonium), there were no differences between experimental mucosa and control mucosa under the same concentration(P > 0.05).CONCLUSION HSSC ameliorates constipation by increasing colonic secretion, which is mediated via the coaction of c AMPdependent and Ca^(2+)-dependent Cl^-channels, NKCC, Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger.展开更多
In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation b...In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease.展开更多
The comparison results of three beach profile data repeatedly measured before and after the typhoon in Shuidong Bay,west Guangdong province which show that there are significant differences in beach profile erosion an...The comparison results of three beach profile data repeatedly measured before and after the typhoon in Shuidong Bay,west Guangdong province which show that there are significant differences in beach profile erosion and response process.And the changes of beach profile can be divided into:strong downward overall low shoreline regressive type and overall slight erosion shoreline regressive type.Application of the modified mildslope equation along three beach profile are simulated wave high reflection to the sea side,to the section vertical shore pressure gradient and including water roll force and radiation stress,the vertical shore forces one dimensional profile along the momentum conservation equation(radiation stress and water roll force)bottom friction and lateral mixing reaction between numerical solution,the momentum conservation equations of the wave increases the water flow velocity and section along the profile distribution of wave height and related forces.The analysis shows that the extent and difference of coastal erosion depend on the shoreline erosion mode stimulated by the maximum surge water of the coastal current and the maximum velocity of the coastal current and the dynamic state of the profile topography under the action of the profile location,morphology and incident wave elements.展开更多
The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are do...The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high- temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be -0.19 at 1073 K in the heaviest oxygen reduced sample.展开更多
Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchan...Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchannels within typical single crystalline organic semiconductors remains unclear as the orientations of these molecules are diverse,and their control usually requires additional side chain groups that misrepresent the intrinsic properties of the original semiconducting molecules.Therefore,the construction of conduction channels with intrinsicπ-πstacking in the molecule-based device is crucial for the utilization of their unique transport characteristics and understanding of the transport mechanism.To this end,we present a molecular intercalation strategy that integrates two-dimensional layered materials with functional organic semiconductor molecules for functional molecule-based electronics.Various organic semiconductor molecules can be effectively intercalated into the van der Waals gaps of semi-metallic TaS_(2) withπ-πstacking configuration and controlled intercalant content.Our results show that the vertical charge transport in the stacking direction shows a tunneling-dominated mechanism that strongly depends on the molecular structures.Furthermore,we demonstrated a new type of molecule-based vertical transistor in which TaS_(2) andπ-πstacked organic molecules function as the electrical contact and the active channel,respectively.On/off ratios as high as 447 are achieved under electrostatic modulation in ionic liquid,comparable to the current state-of-the-art molecular transistors.Our study provides an ideal platform for probing intrinsic charge transport acrossπ-πstacked conjugated molecules and also a feasible approach for the construction of high-performance molecule-based electronic devices.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51179211)
文摘Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport. By incorporating these counteracting driving forces in a phase-averaged manner, the theoretically-based quasi-steady formula of Wang (2007) is modified to predict the magnitude and direction of net cross-shore total load transport under the coaction of wave and current. The predictions show an excellent agreement with the measurement data on medium and fine sand collected by Dohmen-Janssen and Hanes (2002) and Schretlen (2012) in a full-scale wave flume at the Coastal Research Centre in Hannover, Germany. The modified formula can predict the net onshore transport of fine sand in sheet flows. In particular, it can predict the net offshore transport of medium sand in rippled beds through enlarged bed roughness, as well as the net offshore transport of fine-to-coarse sand in sheet flows with the aid of a new criterion to judge the occurrence of net offshore transport.
基金funded by the National Natural Science Foundation of China(31972497).
文摘Multiple nitrate transporter(NRT)genes exist in the genome of bread wheat,and it is of great importance to identify the elite NRT genes for N-efficient wheat cultivar breeding.A candidate gene association study(CGAS)of six N use efficiency(NUE)related traits(grain N concentration(GNC),straw N concentration(SNC),grain yield(GY),grain N accumulation(GNA),shoot total N accumulation(STN)and N harvest index(NHI))was performed based on SNPs in 46 NRT2 genes using a panel composed of 286 wheat cultivars.CGAS identified TaNRT2.1-6B as an elite NRT gene that is significantly associated with four(NHI,SNC,GNA and GY)of the six NUE-related traits simultaneously.TaNRT2.1-6B is located on the plasma membrane and acts as a dual-affinity NRT.The overexpression of TaNRT2.1-6B increased the N influx and root growth of wheat,whereas gene silence lines resulted in the opposite effects.The overexpression of TaNRT2.1-6B also improved GY and N accumulation of wheat under either limited or sufficient N conditions.The data provide the TaNRT2.1-6B gene and the two associated SNP markers as promising powerful tools for breeding wheat cultivars with high N uptake ability and NUE.
基金supported by the National Natural Science Foundation of China (No. 51234007, No. 51490654, No. 51504276, and No. 51504277)Program for Changjiang Scholars and Innovative Research Team in University (IRT1294)+3 种基金the Natural Science Foundation of Shandong Province (ZR2014EL016, ZR2014EEP018)China Postdoctoral Science Foundation (No. 2014M551989 and No. 2015T80762)the Major Programs of Ministry of Education of China (No. 311009)Introducing Talents of Discipline to Universities (B08028)
文摘In order to investigate the influence on shale gas well productivity caused by gas transport in nanometer- size pores, a mathematical model of multi-stage fractured horizontal wells in shale gas reservoirs is built, which considers the influence of viscous flow, Knudsen diffusion, surface diffusion, and adsorption layer thickness. A dis- crete-fracture model is used to simplify the fracture mod- cling, and a finite element method is applied to solve the model. The numerical simulation results indicate that with a decrease in the intrinsic matrix permeability, Knudsen diffusion and surface diffusion contributions to production become large and cannot be ignored. The existence of an adsorption layer on the nanopore surfaces reduces the effective pore radius and the effective porosity, resulting in low production from fractured horizontal wells. With a decrease in the pore radius, considering the adsorption layer, the production reduction rate increases. When the pore radius is less than 10 nm, because of the combined impacts of Knudsen diffusion, surface diffusion, and adsorption layers, the production of multi-stage fractured horizontal wells increases with a decrease in the pore pressure. When the pore pressure is lower than 30 MPa, the rate of production increase becomes larger with a decrease in pore pressure.
基金supported by the National Key R&D Program of China(2018YFB1500103)the National Natural Science Foundation of China(62104082)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2022A1515010746,2022A1515011228)the Science and Technology Program of Guangzhou(202201010458)。
文摘Room temperature sputtered inorganic nickel oxide(NiO_(x))is one of the most promising hole transport layers(HTL)for perovskite-sillion 2-terminal tandem solar cells with the aid of ultrathin and compact organic layers to passivate the surface defects.In this study,the aromatic solvent with different substituent groups was used to regulate the conformation of poly[bis(4-phenyl)(2,4,6-trimethylphenyl)am ine](PTAA)layer.As a result,the single-junction perovskite solar cell(PSC)gained a power conversion efficiency(PCE)of 20.63%,contributing to a 27.21%efficiency for monolithic perovskite/silicon(double-side polished)2-terminal tandem solar cell,by applying the alkyl aromatic solvent to enhance theπ-πstacking of PTAA molecular chains.The tandem solar cell can maintain 95%initial efficiency after aging over 1000 h.This study provides a universal approach for improving the photovoltaic performance of NiO_(x)/polymer-based perovskite/silicon tandem solar cells and other single junction inverted PSCs.
基金supported by the following projects:Youth Science and Technology Fund of Affiliated Hospital of Hebei University(2017Q024)Baoding City Science and Technology Plan Project(2041zf295),and Hebei University Medical Subject Cultivation Project(2022b03).
文摘Objective:To observe the changes in insulin resistance in patients with gestational diabetes mellitus(GDM)based on the detection of serum microRNA-372-3p and glucose transporter protein 4(GLUT4)levels.Methods:We conducted a retrospective cohort study of 42 patients who were diagnosed with GDM and hospitalized in our hospital during the period from January 2017 to December 2021 and another 42 patients who had normal pregnancy during the same period by collecting their clinical data.We analyzed their serum microRNA expression profiles and miR-372-3p levels to study the relationship between GDM and insulin resistance.Results:The relative expression of miR-372-3p in the serum of patients in the GDM group was significantly higher than that of patients in the control group,but the GLUT 4 level of the GDM group was significantly lower than that of the control group(P<0.05).Compared with the control group,the GDM group had significantly higher levels of fasting blood glucose(FBG),fasting insulin(FINS),2-hour postprandial blood glucose(2h-BG),total cholesterol(TC),triglyceride(TG),and homeostatic model assessment for insulin resistance(HOMA-IR)index but significantly lower homeostasis model assessment ofβ-cell function(HOMA-β)index(P<0.05).The relative expression of miR-372-3p in serum was independently and positively correlated with HOMA-IR,while the level of GLUT4 was independently and negatively correlated with HOMA-IR(P<0.05).Conclusion:Glycosylated hemoglobin test in the early stages of pregnancy(12–13 weeks of gestation)is important to ensure the health of pregnant women and fetuses.The screening and intervention for elevated glucose in pregnant women act as a guideline for the treatment of GDM.Patients with insulin resistance and related complications such as hyperinsulinemia and hypoglycemia should be given priority.
基金Supported by the Clinical Medicine Development Project of Beijing Municipal Administration of Hospitals,No.ZYLX201411
文摘AIM To investigate the effect of Hemp seed soft capsule(HSCC) on colonic ion transport and its related mechanisms in constipation rats.METHODS Sprague-Dawley male rats were randomly divided into three groups: normal group, constipation group and HSSC group. Rats in the constipation and HSSC groups were administrated loperamide 3 mg/kg per day orally for 12 d to induce the constipation model. Then, the HSSC group was given HSSC 0.126 g/kg per day by gavage for 7 d. The normal and constipation groups were treated with distilled water. After the treatment, the fecal wet weight and water content were measured. The basal short-circuit current(Isc) and resistance were measured by an Ussing Chamber. Besides the in vivo drug delivery experiment above, an in vitro drug application experiment was also conducted. The accumulative concentrations of HSSC(0.1 mg/m L, 0.5 mg/m L, 1.0 mg/m L, 2.5 mg/m L, 5.0 mg/m L, 10.0 mg/m L and 25.0 mg/m L) were added to the normal isolatedcolonic mucosa and the Isc was recorded. Further, after the application of either ion(Cl^-or HCO_3^-) substitution, ion channel-related inhibitor(N-phenylanthranilic acid, glybenclamide, 4,4-diisothiocyano-2,2-stilbenedisulfonic acid or bumetanide) or neural pathway inhibitor [tetrodotoxin(TTX), atropine, or hexamethonium], the Isc induced by HSSC was also measured. RESULTS In the constipation group, the fecal wet weight and the water content were decreased in comparison with the normal group(P < 0.01). After the treatment with HSSC, the fecal wet weight and the water content in the HSSC group were increased, compared with the constipation group(P < 0.01). In the constipation group, the basal Isc was decreased and resistance was increased, in comparison with the normal group(P < 0.01). After the treatment with HSSC, the basal Isc was increased(P < 0.05) and resistance was decreased(P < 0.01) in the HSSC group compared with the constipation group. In the in vitro experiment, beginning with the concentration of 1.0 mg/m L, differences in Isc were found between the experimental mucosa(with HSSC added) and control mucosa. The Isc of experimental mucosa was higher than that of control mucosa under the same concentration(1.0 mg/m L, P < 0.05; 2.5-25 mg/m L, P < 0.01). After the Cl^-or HCO_3^-removal and pretreated with different inhibitors(c AMPdependent and Ca^(2+)-dependent Cl^-channels, Na^+-K^+-2 Cl^-cotransporter(NKCC), Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger inhibitor), there were differences between experimental mucosa and control mucosa; the Isc of experimental mucosa was lower than that of control mucosa under the same concentration(P < 0.05). Meanwhile, after pretreatment with neural pathway inhibitor(TTX, atropine, or hexamethonium), there were no differences between experimental mucosa and control mucosa under the same concentration(P > 0.05).CONCLUSION HSSC ameliorates constipation by increasing colonic secretion, which is mediated via the coaction of c AMPdependent and Ca^(2+)-dependent Cl^-channels, NKCC, Na^+-HCO_3^-cotransporter or Cl^-/HCO_3^-exchanger.
基金Supported by Key Projects in the National Science & Technology Pillar Program (2011BAC08B00)
文摘In this paper, poly(amide-6-β-ethylene oxide) (PEBA1657) copolymer was used to prepare multilayer polyetherimide (PEI)/polydimethylsiloxane (PDMS)/PEBA1657/PDMS composite membranes by dip-coating method. Permeation behaviors of ethylene, ethane, propylene, propane, n-butane, methane and nitrogen through the multilayer composite membranes were investigated over a range of operating temperature and pressure. The permeances of light hydrocarbons through PEI/PDMS/PEBA1657/PDMS composite membranes increase with their increasing condensability, and the olefins are more permeable than their corresponding paraffins. For light hydrocarbons, the gas permeances increase significantly as temperature increasing. When the transmembrane pressure difference increases, the gas permeance increases moderately due to plasticization effect, while their apparent activation energies for permeation decrease.
基金Project funded by the National Nature Fund(41371498,42071007)。
文摘The comparison results of three beach profile data repeatedly measured before and after the typhoon in Shuidong Bay,west Guangdong province which show that there are significant differences in beach profile erosion and response process.And the changes of beach profile can be divided into:strong downward overall low shoreline regressive type and overall slight erosion shoreline regressive type.Application of the modified mildslope equation along three beach profile are simulated wave high reflection to the sea side,to the section vertical shore pressure gradient and including water roll force and radiation stress,the vertical shore forces one dimensional profile along the momentum conservation equation(radiation stress and water roll force)bottom friction and lateral mixing reaction between numerical solution,the momentum conservation equations of the wave increases the water flow velocity and section along the profile distribution of wave height and related forces.The analysis shows that the extent and difference of coastal erosion depend on the shoreline erosion mode stimulated by the maximum surge water of the coastal current and the maximum velocity of the coastal current and the dynamic state of the profile topography under the action of the profile location,morphology and incident wave elements.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632506)the National Natural Science Foundation of China(Grant Nos.51202132 and 51002087)
文摘The thermoelectric properties of Sr0.61Ba0.39Nb2O6-δ ceramics, reduced in different conditions, are investigated in the temperature range from 323 K to 1073 K. The electrical transport behaviors of the samples are dominated by the thermal-activated polaron hopping in the low temperature range, the Fermi glass behavior in the middle temperature range, and the Anderson localized behavior in the high temperature range. The thermal conductivity presents a plateau at high- temperatures, indicating a glass-like thermal conduction behavior. Both the thermoelectric power factor and the thermal conductivity increase with the increase of the degree of oxygen-reduction. Taking these two factors into account, the oxygen-reduction can still contribute to promoting the thermoelectric figure of merit. The highest ZT value is obtained to be -0.19 at 1073 K in the heaviest oxygen reduced sample.
基金support by the National Natural Science Foundation of China(Nos.22172075,92156024)the Fundamental Research Funds for the Central Universities in China(Nos.0210/14380174,14380273)+4 种基金Beijing National Laboratory for Molecular Sciences(No.BNLMS202107)Thousand Talents Plan of Jiangxi Province(No.jxsq2019102002)support by the National Natural Science Foundation of China(No.22033004)support from Early Career Scheme Project(No.21302821)General Research Fund Project(No.11314322)from the University Grants Committee of Hong Kong.
文摘Theπ-πstacking is a well-recognized intermolecular interaction that is responsible for the construction of electron hopping channels in numerous conducting frameworks/aggregates.However,the exact role ofπ-to-πchannels within typical single crystalline organic semiconductors remains unclear as the orientations of these molecules are diverse,and their control usually requires additional side chain groups that misrepresent the intrinsic properties of the original semiconducting molecules.Therefore,the construction of conduction channels with intrinsicπ-πstacking in the molecule-based device is crucial for the utilization of their unique transport characteristics and understanding of the transport mechanism.To this end,we present a molecular intercalation strategy that integrates two-dimensional layered materials with functional organic semiconductor molecules for functional molecule-based electronics.Various organic semiconductor molecules can be effectively intercalated into the van der Waals gaps of semi-metallic TaS_(2) withπ-πstacking configuration and controlled intercalant content.Our results show that the vertical charge transport in the stacking direction shows a tunneling-dominated mechanism that strongly depends on the molecular structures.Furthermore,we demonstrated a new type of molecule-based vertical transistor in which TaS_(2) andπ-πstacked organic molecules function as the electrical contact and the active channel,respectively.On/off ratios as high as 447 are achieved under electrostatic modulation in ionic liquid,comparable to the current state-of-the-art molecular transistors.Our study provides an ideal platform for probing intrinsic charge transport acrossπ-πstacked conjugated molecules and also a feasible approach for the construction of high-performance molecule-based electronic devices.