Independent component analysis(ICA)is used to study the multiscale localised modes of streamwise velocity fluctuations in turbulent channel flows.ICA aims to decompose signals into independent modes,which may induce s...Independent component analysis(ICA)is used to study the multiscale localised modes of streamwise velocity fluctuations in turbulent channel flows.ICA aims to decompose signals into independent modes,which may induce spatially localised objects.The height and size are defined to quantify the spatial position and extension of these ICA modes,respectively.In contrast to spatially extended proper orthogonal decomposition(POD)modes,ICA modes are typically localised in space,and the energy of some modes is distributed across the near-wall region.The sizes of ICA modes are multiscale and are approximately proportional to their heights.ICA modes can also help to reconstruct the statistics of turbulence,particularly the third-order moment of velocity fluctuations,which is related to the strongest Reynolds shear-stressproducing events.The results reported in this paper indicate that the ICA method may connect statistical descriptions and structural descriptions of turbulence.展开更多
A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotic...A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotically into a high- Reynolds-number closure remote from the wall. The closure is applied to a pressure- driven 3D transient channel flow. The predicted results are in fair agreement with the DNS data.展开更多
基金supported by NSFC Basic Science Center Program for“Multiscale Problems in Nonlinear Mechanics”(No.11988102)National Natural Science Foundation of China(Nos.12002344,11232011 and 11572331)+2 种基金The authors would like to acknowledge the support from China Postdoctoral Science Foundation(No.2020M670478)the Strategic Priority Research Program(No.XDB22040104)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.QYZDJ-SSW-SYS002).
文摘Independent component analysis(ICA)is used to study the multiscale localised modes of streamwise velocity fluctuations in turbulent channel flows.ICA aims to decompose signals into independent modes,which may induce spatially localised objects.The height and size are defined to quantify the spatial position and extension of these ICA modes,respectively.In contrast to spatially extended proper orthogonal decomposition(POD)modes,ICA modes are typically localised in space,and the energy of some modes is distributed across the near-wall region.The sizes of ICA modes are multiscale and are approximately proportional to their heights.ICA modes can also help to reconstruct the statistics of turbulence,particularly the third-order moment of velocity fluctuations,which is related to the strongest Reynolds shear-stressproducing events.The results reported in this paper indicate that the ICA method may connect statistical descriptions and structural descriptions of turbulence.
基金The project supported by the National Natural Science Foundation of China
文摘A second-moment closure for the near-wall turbulence is proposed. The limiting behaviour of this closure near a wall is consistent with that of the exact Reynolds-stress transport equations, and it converts asymptotically into a high- Reynolds-number closure remote from the wall. The closure is applied to a pressure- driven 3D transient channel flow. The predicted results are in fair agreement with the DNS data.