The EEG α wave mode shows chaotic characters and the frequency spectrum is entrained to the external photo-stimulation peak. This effect was observed exceedingly in the photo-sensitive children as compared with the n...The EEG α wave mode shows chaotic characters and the frequency spectrum is entrained to the external photo-stimulation peak. This effect was observed exceedingly in the photo-sensitive children as compared with the normal adults. The α spectrum shows asymmetric components with lower frequency-side tail. This spectrum shape could be realized from the computation in terms of the McCulloch-Pitts model and presented in comparison with the observed result. From this analysis, it turns out that the frequency spectrum analysis is most essential for the investigation of the EEG characteristics in comparison with simple waveform inspections in the time-passage. When light flashing frequencies come close to the alpha peak, the both peaks are fused in a giant single peak. These phenomena cannot be understood by the simple mechanical resonant theory but as discussed from the viewpoint of the soft chaotic dynamics of the neural network. Here the both peak intensities Iα and Iex are investigated under different conditions of ωex ωα, and ωα ωex, and it is shown that the entrainment effect is remarkably different in both cases. This result can be understood from the relating neuronal numbers and discussed.展开更多
The characteristics of magnetohydrodynamic fast wave propagation in the solar stratified atmosphere are studied by the ray tracing method. The propagation behaviour of the wavefronts is described in detail. A magnetic...The characteristics of magnetohydrodynamic fast wave propagation in the solar stratified atmosphere are studied by the ray tracing method. The propagation behaviour of the wavefronts is described in detail. A magnetic field incorporating the characteristics field spreading expected in flux tubes is used, which represents the main feature of an active region. Partly ionization is considered beside the stratified solar atmosphere consisting chromosphere, transition region and corona. The study may explain the characteristics in observations of Moreton and extraultraviolet image telescope (EIT) waves. The wavefront incurred by the disturbance initialized at the base of the transition region propagates fast initially due to strong magnetic field, and it slows down when arriving beyond the region of flux-tube. Meanwhile, the wave propagates in the corona with a more consistent speed, as seen in the observation of EIT waves. The speeds and propagated characteristics in chromosphere and corona of the wavefronts are in agreement with those observed in H~ Moreton and EIT waves, respectively.展开更多
文摘The EEG α wave mode shows chaotic characters and the frequency spectrum is entrained to the external photo-stimulation peak. This effect was observed exceedingly in the photo-sensitive children as compared with the normal adults. The α spectrum shows asymmetric components with lower frequency-side tail. This spectrum shape could be realized from the computation in terms of the McCulloch-Pitts model and presented in comparison with the observed result. From this analysis, it turns out that the frequency spectrum analysis is most essential for the investigation of the EEG characteristics in comparison with simple waveform inspections in the time-passage. When light flashing frequencies come close to the alpha peak, the both peaks are fused in a giant single peak. These phenomena cannot be understood by the simple mechanical resonant theory but as discussed from the viewpoint of the soft chaotic dynamics of the neural network. Here the both peak intensities Iα and Iex are investigated under different conditions of ωex ωα, and ωα ωex, and it is shown that the entrainment effect is remarkably different in both cases. This result can be understood from the relating neuronal numbers and discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40274050 and 40336052, and the National Key Basic Research Special Foundation of China under Grant No G2000078405.
文摘The characteristics of magnetohydrodynamic fast wave propagation in the solar stratified atmosphere are studied by the ray tracing method. The propagation behaviour of the wavefronts is described in detail. A magnetic field incorporating the characteristics field spreading expected in flux tubes is used, which represents the main feature of an active region. Partly ionization is considered beside the stratified solar atmosphere consisting chromosphere, transition region and corona. The study may explain the characteristics in observations of Moreton and extraultraviolet image telescope (EIT) waves. The wavefront incurred by the disturbance initialized at the base of the transition region propagates fast initially due to strong magnetic field, and it slows down when arriving beyond the region of flux-tube. Meanwhile, the wave propagates in the corona with a more consistent speed, as seen in the observation of EIT waves. The speeds and propagated characteristics in chromosphere and corona of the wavefronts are in agreement with those observed in H~ Moreton and EIT waves, respectively.