期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Understanding and simulating of three-dimensional subsurface hydrological partitioning in an alpine mountainous area, China
1
作者 ZHANG Lanhui TU Jiahao +3 位作者 AN Qi LIU Yu XU Jiaxin ZHANG Haixin 《Journal of Arid Land》 SCIE CSCD 2024年第11期1463-1483,共21页
Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This stud... Critical zone(CZ)plays a vital role in sustaining biodiversity and humanity.However,flux quantification within CZ,particularly in terms of subsurface hydrological partitioning,remains a significant challenge.This study focused on quantifying subsurface hydrological partitioning,specifically in an alpine mountainous area,and highlighted the important role of lateral flow during this process.Precipitation was usually classified as two parts into the soil:increased soil water content(SWC)and lateral flow out of the soil pit.It was found that 65%–88%precipitation contributed to lateral flow.The second common partitioning class showed an increase in SWC caused by both precipitation and lateral flow into the soil pit.In this case,lateral flow contributed to the SWC increase ranging from 43%to 74%,which was notably larger than the SWC increase caused by precipitation.On alpine meadows,lateral flow from the soil pit occurred when the shallow soil was wetter than the field capacity.This result highlighted the need for three-dimensional simulation between soil layers in Earth system models(ESMs).During evapotranspiration process,significant differences were observed in the classification of subsurface hydrological partitioning among different vegetation types.Due to tangled and aggregated fine roots in the surface soil on alpine meadows,the majority of subsurface responses involved lateral flow,which provided 98%–100%of evapotranspiration(ET).On grassland,there was a high probability(0.87),which ET was entirely provided by lateral flow.The main reason for underestimating transpiration through soil water dynamics in previous research was the neglect of lateral root water uptake.Furthermore,there was a probability of 0.12,which ET was entirely provided by SWC decrease on grassland.In this case,there was a high probability(0.98)that soil water responses only occurred at layer 2(10–20 cm),because grass roots mainly distributed in this soil layer,and grasses often used their deep roots for water uptake during ET.To improve the estimation of soil water dynamics and ET,we established a random forest(RF)model to simulate lateral flow and then corrected the community land model(CLM).RF model demonstrated good performance and led to significant improvements in CLM simulation.These findings enhance our understanding of subsurface hydrological partitioning and emphasize the importance of considering lateral flow in ESMs and hydrological research. 展开更多
关键词 subsurface hydrological partitioning lateral flow random forest model community land model(CLM) alpine mountainous area
下载PDF
Application of Self-pressure Sprinkler Irrigation Technology to Grassland Vegetation Restoration in Alpine Arid Areas
2
作者 DORJHEE Towndrob BASANG Chilie LIU Yu 《Journal of Landscape Research》 2016年第6期57-60,共4页
To study the application of self-pressure sprinkler irrigation technology to vegetation restoration of grassland in alpine arid areas,three treatments including fenced grassland(FG),fencedirrigated grassland(FA),and f... To study the application of self-pressure sprinkler irrigation technology to vegetation restoration of grassland in alpine arid areas,three treatments including fenced grassland(FG),fencedirrigated grassland(FA),and free grazing grassland(CK) were compared in respect of primary productivity.The results showed that the community coverage of FA was only 35.96% higher than that of FG and 152.69% higher than that of CK;the plant height of FA was only 76.71% higher than that of FG and 155.77% higher than that of CK;the productivity of the community in FA was only 24.10% higher than that of FG and 110.00% higher than that of CK.It indicates that the self-pressure sprinkler irrigation technology has certain demonstration and promotion potential in vegetation restoration of grassland in alpine regions and can provide a new way for the sustainable development of grassland animal husbandry in Tibet. 展开更多
关键词 Self-pressure sprinkler irrigation alpine arid areas Grassland vegetation RESTORATION
下载PDF
Ecological Restoration Technology and Carbon Reduction Paths of Abandoned Mines in Zoige Alpine Grassland Area
3
作者 Jiaolong YE Zhengqiang XU +1 位作者 Hongmei ZHONG Hong YUAN 《Meteorological and Environmental Research》 CAS 2023年第5期48-53,共6页
At first,the ecological restoration technology of abandoned mines is summarized,and the paths and models of mine ecological restoration in Zoige grassland area under the background of carbon neutrality are analyzed.Mo... At first,the ecological restoration technology of abandoned mines is summarized,and the paths and models of mine ecological restoration in Zoige grassland area under the background of carbon neutrality are analyzed.Moreover,the problems and deficiencies in the current research on mine ecological restoration in Zoige grassland area are initially identified,and the future research trend is prospected to provide a reference for the path of carbon reduction by mine ecological restoration in Zoige grassland area and other alpine grassland areas in the future. 展开更多
关键词 Carbon neutrality alpine grassland mining area Ecological restoration
下载PDF
Biological soil crusts and their potential applications in the sand land over Qinghai-Tibet Plateau
4
作者 Yuan Zhang BenLi Liu 《Research in Cold and Arid Regions》 CSCD 2024年第1期20-29,共10页
The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioratio... The Qinghai-Tibet Plateau is now experiencing ecological degradation risks as a result of climate change and human activities.The alpine grassland ecology in permafrost zones is fragile and susceptible to deterioration due to its high altitude,low temperature,and limited oxygen,which complicates the repair of damaged land.Biological soil crusts(BSCs)are crucial for land restoration in plateau regions because they can thrive in harsh conditions and have environmentally beneficial traits.Inoculated biological soil crust(IBSC)has shown success in low-altitude desert regions,but may not be easily duplicated to the plateau environment.Therefore,it is essential to do a comprehensive and multifaceted analysis of the basic theoretical comprehension and practical application of BSCs on the Tibetan Plateau.This review article aims to provide a brief summary of the ecological significance and the mechanisms related to the creation,growth,and progression of BSCs.It discusses the techniques used for cultivating BSCs in laboratories and using them in the field,focusing on the Qinghai-Tibet Plateau circumstance.We thoroughly discussed the potential and the required paths for further studies.This study may be used as a basis for selecting suitable microbial strains and accompanying supplemental actions for implementing IBSCs in the Qinghai-Tibet Plateau. 展开更多
关键词 Biological soil crusts Qinghai-Tibet Plateau alpine sand areas Inoculated biological soil crusts technology ALGAE CYANOBACTERIA
下载PDF
Estimation of Regional Evapotranspiration in Alpine Area and Its Response to Land Use Change:A Case Study in Three-River Headwaters Region of Qinghai-Tibet Plateau,China 被引量:6
5
作者 LI Huixia LIU Guohua FU Bojie 《Chinese Geographical Science》 SCIE CSCD 2012年第4期437-449,共13页
Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Q... Three-River Headwaters (TRH) region involved in this paper refers to the source region of the Changjiang (Yangtze) River, the Huanghe (Yellow) River and the Lancang River in China. Taking the TRH region of the Qing- hai-Tibet Plateau as a case, the annual evapotranspiration (ET) model developed by Zhang et al. (2001) was applied to evaluate mean annual ET in the alpine area, and the response of annual ET to land use change was analyzed. The plant-available water coefficient (w) of Zhang's model was revised by using vegetation-temperature condition index (VTCI) before annual ET was calculated in alpine area. The future land use scenario, an input of ET model, was spa- tially simulated by using the conversion of land use and its effects at small regional extent (CLUE-S) to study the re- sponse of ET to land use change. Results show that the relative errors between the simulated ET and that calculated by using water balance equation were 3.81% and the index of agreement was 0.69. This indicates that Zhang's ET model based on revised plant-available water coefficient is a scientific and practical tool to estimate the annual ET in the al- pine area. The annual ET in 2000 in the study area was 221.2 ram, 11.6 mm more than that in 1980. Average annual ET decreased from southeast to northwest, but the change of annual ET between 1980 and 2000 increased from southeast to northwest. As a vast and sparsely populated area, the population in the TRH region was extremely unbalanced and land use change was concentrated in very small regions. Thus, land use change had little effect on total annual ET in the study area but a great impact on its spatial distribution, and the effect of land use change on ET decreased with in- creasing precipitation. ET was most sensitive to the interconversion between forest and unused land, and was least sen- sitive to the interconversion between cropland and low-covered grassland. 展开更多
关键词 evapotranspiration (ET) land use change plant-available water coefficient alpine area Three-RiverHeadwaters (TRH) region Qinghai-Tibet Plateau
下载PDF
Risk assessment of glacial debris flow on alpine highway under climate change: A case study of Aierkuran Gully along Karakoram Highway 被引量:5
6
作者 LI Ya-mei SU Li-jun +1 位作者 ZOU Qiang WEI Xue-li 《Journal of Mountain Science》 SCIE CSCD 2021年第6期1458-1475,共18页
Glacial debris flows(GDFs) often occur in alpine regions that are subject to rapid climate change, and pose a serious threat to road systems. However, the ways that climate change impacts GDF risks along road systems ... Glacial debris flows(GDFs) often occur in alpine regions that are subject to rapid climate change, and pose a serious threat to road systems. However, the ways that climate change impacts GDF risks along road systems remain poorly understood. Aierkuran Gully, located in eastern Pamir along Karakoram Highway(KKH), is a hotspot for GDF activity and climate change, and was thus selected to investigate the GDF risk to road systems under climate change conditions. Reg CM4.6 climate data for northwestern China were selected as climate projections during baseline(2011–2020) and future periods(2031–2040) under the Representative Concentration Pathway(RCP) 8.5. To reflect the coupling effect of rainfall and melt water that triggers GDF, a glacial hydrological model DETIM that considers both factors was applied to calculate the peak debris flow discharge. A FLO-2D model was calibrated based on high-quality data collected from a detailed field investigation and historical debris flow event. The FLO-2D model was used to simulate the debris flow depth and velocity during baseline and future periods under RCP8.5. The debris flow hazard was analyzed by integrating the maximum flow depth and momentum. Road structure vulnerability was further determined based on the economic value and susceptibility of hazard-affected objects. The GDF risk along KKH was assessed based on the GDF hazard and vulnerability analysis. Our results show that climate change would lead to amplified peak debris flow discharge, trigger highermagnitude GDF, and induce more severe damage and threats to the road system. Compared with the baseline period, the debris flow damage risk for culverts and bridges would increase and the areas that inundate the road and pavement would expand. Our findings provide valuable insights for the development of mitigation strategies to adapt road systems to climate change, especially in alpine regions with highly active GDFs. 展开更多
关键词 Glacial debris flow Risk assessment Climate change alpine area Karakoram Highway
下载PDF
A three-dimensional numerical study on the stability of layered rock spillway tunnels in alpine canyon areas
7
作者 Peng-Zhi Pan Fuyuan Tan +3 位作者 Fengqiong Li Fudong Chi Xufeng Liu Zhaofeng Wang 《Deep Resources Engineering》 2024年第2期68-81,共14页
Rock masses in alpine canyon areas exhibit strong heterogeneity,discontinuity,and are subject to strong tectonic effects and stress unloading,leading to extremely complex distribution of in-situ stress.In addition,the... Rock masses in alpine canyon areas exhibit strong heterogeneity,discontinuity,and are subject to strong tectonic effects and stress unloading,leading to extremely complex distribution of in-situ stress.In addition,the occurrence of layered rock masses makes it more complex,with obvious anisotropic mechanical properties.This study proposes a comprehensive method for evaluating the stability of layered rock spillway tunnels in a hydropower station in an alpine canyon.First,the failure criterion and mechanical model of layered rock masses considering the anisotropy induced by the bedding plane and the true triaxial stress regime were established;an inversion theory and calculation procedure for in-situ stress in alpine canyon areas were then introduced.Finally,by using a self-developed numerical tool,i.e.CASRock,the stability of the layered rock spillway tunnel in a hydropower station was numerically analyzed.The results show that,affected by geological structure and stratigraphic lithology,there is significant differentiation in the in-situ stress in alpine canyons,with horizontal tectonic stress as the main factor.The occurrence of layered rock masses in the region has a significant impact on the stability of surrounding rock,and the angle between the bedding strike and the tunnel axis as well as the bedding dip both exert a significant influence on the failure characteristics of the surrounding rock. 展开更多
关键词 alpine canyon areas In-situ stress inversion Layered rock mass Stability characteristics of surrounding rock Numerical simulation
下载PDF
Leaf stoichiometry of Leontopodium lentopodioides at high altitudes on the northeastern Qinghai-Tibetan Plateau,China 被引量:1
8
作者 WANG Hairu SU Haohai +1 位作者 Asim BISWAS CAO Jianjun 《Journal of Arid Land》 SCIE CSCD 2022年第10期1124-1137,共14页
Altitude affects leaf stoichiometry by regulating temperature and precipitation,and influencing soil properties in mountain ecosystems.Leaf carbon concentration(C),leaf nitrogen concentration(N),leaf phosphorous conce... Altitude affects leaf stoichiometry by regulating temperature and precipitation,and influencing soil properties in mountain ecosystems.Leaf carbon concentration(C),leaf nitrogen concentration(N),leaf phosphorous concentration(P),and their stoichiometric ratios of Leontopodium lentopodioides(Willd.)Beauv.,a widespread species in degraded grasslands,were investigated to explore its response and adaptation strategy to environmental changes along four altitude gradients(2500,3000,3500,and 3800 m a.s.l.)on the northeastern Qinghai-Tibetan Plateau(QTP),China.The leaf C significantly varied but without any clear trend with increasing altitude.Leaf N showed an increasing trend,and leaf P showed a little change with increasing altitude,with a lower value of leaf P at 3500 m than those at other altitudes.Similarity,leaf C:P and N:P exhibited a little change with increasing altitude,which both had greater values at 3500 m than those at other altitudes.However,leaf C:N exhibited a decreasing trend with increasing altitude.Soil NH^(+)_(4)-N,soil pH,soil total phosphorus(STP),mean annual temperature(MAT),and mean annual precipitation(MAP)were identified as the main factors driving the variations in leaf stoichiometry of L.lentopodioides across all altitudes,with NH^(+)_(4)-N alone accounting for 50.8%of its total variation.Specifically,leaf C and N were mainly controlled by MAT,soil pH,and NH^(+)_(4)-N,while leaf P by MAP and STP.In the study area,it seems that the growth of L.lentopodioides may be mainly limited by STP.The results could help to strengthen our understanding of the plasticity of plant growth to environmental changes and provide new information on global grassland management and restoration. 展开更多
关键词 alpine area environmental changes leaf elements nutrient limitation Qilian Mountains
下载PDF
Estimation of Economic and Ecological Value of Raising Sheep in Pastoral Area
9
作者 Zenghai LUO Shengzhen HOU +3 位作者 Zhiyou WANG Yuchun XIN Huakun ZHOU Guiying YUAN 《Asian Agricultural Research》 2020年第6期4-8,12,共6页
Tibetan sheep is a unique breed of livestock in Alpine pastoral areas,which is one of the main economic pillars of animal husbandry in pastoral areas,in order to analyze and compare the estimated the economic and ecol... Tibetan sheep is a unique breed of livestock in Alpine pastoral areas,which is one of the main economic pillars of animal husbandry in pastoral areas,in order to analyze and compare the estimated the economic and ecological benefits of Tibetan sheep under different feeding modes,this paper used a simplified model from multiple angles of animal production,economics and Ecology,The results show that:(i)Under the traditional grazing condition,the annual income of raising one ewe is only 23.4 yuan;(ii)Under the high-efficiency breeding mode,the average income of ewes bred by high-efficiency technology was 168 yuan/(head·year),which was 7 times higher than that of ewes under traditional grazing;each lamb could produce an indirect economic benefit of 500 yuan;(iii)The ecosystem service value affected by each Tibetan sheep through grassland was above 150000 yuan. 展开更多
关键词 Tibetan sheep alpine pastoral area Traditional grazing Ecological value
下载PDF
Vegetation characteristics and soil properties of artificially remediated grasslands:The case study of the Shimenhe mining area in Qilian Mountains,northwest China
10
作者 XiaoMei Yang Qi Feng Meng Zhu 《Research in Cold and Arid Regions》 2024年第4期190-200,共11页
The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problem... The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)> middle recovered degree(MRD)> low recovered degree(LRD)> very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas. 展开更多
关键词 alpine mining area grassland Grassland ecosystem Mine restoration Plant characteristics Soil properties Qilian mountains
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部