Monitoring deformation in high undulating mountainous environments is critical for surface process research and disaster prevention studies. Although observations based on interferometric Synthetic Aperture Radar(InSA...Monitoring deformation in high undulating mountainous environments is critical for surface process research and disaster prevention studies. Although observations based on interferometric Synthetic Aperture Radar(InSAR) are an excellent tool for monitoring deformation, the shadow phenomena can limit its application. Based on a series of geomorphic parameters and limited InSAR observation data, surface deformations were reconstructed in areas with missing observations by constructing a random forest model to compensate for the shadow phenomenon at the grid-scale. The findings suggest that this method can be used to rebuild landscape variation characteristics in places where observation data is lacking. The dominant slope direction in the observation area corresponded to a more significant correlation between the reconstructed topography deformation characteristics and the observation. In addition, when building this model, consideration was given to the geomorphic parameter selection, elevation variation, hypsometric integral value, slope form, lithology, slope variation,and aspect variation;these parameters can significantly affect the surface deformation, which is closely related to their spatial autocorrelation. These findings are significant for eliminating the shadow phenomenon, which often occurs in In SAR observations taken over alpine canyon regions. The terrain and lithology of the underlying surface should be considered when reconstructing the surface deformation characteristics of the shadow region by using satellite observation data.展开更多
Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. Th...Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. The results showed that the main tree species were Picea and Abies in this region, and there were more than 90 forest types. Abies forests mainly dis-tributed in the middle and upper reaches of rivers and their branches, and Picea forests mainly distributed in wide valleys and on half-shaded and half-sunny slopes. The natural regeneration was poor under primitive spruce and fir forest canopy, but was good in the spruce and fire forest gap. The relationship between forest succession and vertical gradient was closely related to the relationship between forest succession procession and plant synusia under primary forests. Human activities could promote and postpone succession process. The results of expanding regeneration were often influenced by topography, vegetation and wind direction.展开更多
基金financially supported by the National Natural Science Foundation of China (42107218)China Geology Survey Project (DD20221738)+1 种基金China Three Gorges Corporation (YMJ(XLD) (19) 110)the National Key Research and Development Program of China (2018YFC1505002)。
文摘Monitoring deformation in high undulating mountainous environments is critical for surface process research and disaster prevention studies. Although observations based on interferometric Synthetic Aperture Radar(InSAR) are an excellent tool for monitoring deformation, the shadow phenomena can limit its application. Based on a series of geomorphic parameters and limited InSAR observation data, surface deformations were reconstructed in areas with missing observations by constructing a random forest model to compensate for the shadow phenomenon at the grid-scale. The findings suggest that this method can be used to rebuild landscape variation characteristics in places where observation data is lacking. The dominant slope direction in the observation area corresponded to a more significant correlation between the reconstructed topography deformation characteristics and the observation. In addition, when building this model, consideration was given to the geomorphic parameter selection, elevation variation, hypsometric integral value, slope form, lithology, slope variation,and aspect variation;these parameters can significantly affect the surface deformation, which is closely related to their spatial autocorrelation. These findings are significant for eliminating the shadow phenomenon, which often occurs in In SAR observations taken over alpine canyon regions. The terrain and lithology of the underlying surface should be considered when reconstructing the surface deformation characteristics of the shadow region by using satellite observation data.
基金This article was supported by State Tenth Five-Year Plan Project (2001BA510B0105) and the Project for Pioneering New Knowledge from Chinese Academy of Sciences (KZCX2-SW-319).
文摘Since 1950, 700 plots were established in the alpine and canyon region of western Sichuan. The distribution charac-teristics and the relationships between forest succession and environmental gradients were studied. The results showed that the main tree species were Picea and Abies in this region, and there were more than 90 forest types. Abies forests mainly dis-tributed in the middle and upper reaches of rivers and their branches, and Picea forests mainly distributed in wide valleys and on half-shaded and half-sunny slopes. The natural regeneration was poor under primitive spruce and fir forest canopy, but was good in the spruce and fire forest gap. The relationship between forest succession and vertical gradient was closely related to the relationship between forest succession procession and plant synusia under primary forests. Human activities could promote and postpone succession process. The results of expanding regeneration were often influenced by topography, vegetation and wind direction.