Implementing conservation actions on-the-ground is not a straightforward process,especially when faced with high scientific uncertainty due to limited available information. This is especially acute in regions of the ...Implementing conservation actions on-the-ground is not a straightforward process,especially when faced with high scientific uncertainty due to limited available information. This is especially acute in regions of the world that harbor many unique species that have not been well studied,such as the alpine zone of the Hengduan Mountains of Northwest Yunnan (NWY),a global biodiversity hotspot and site of The Nature Conservancy’s Yunnan Great Rivers Project. We conducted a quantitative,but rapid regional-level assessment of the alpine flora across NWY to provide a broad-based understanding of local and regional patterns of the alpine flora,the first large-scale analysis of alpine biodiversity patterns in this region. Multivariate analyses were used to classify the major plant community types and link community patterns to habitat variables. Our analysis indicated that most species had small distributions and/or small population sizes. Strong patterns emerged with higher diversity in the more northern mountains,but beta diversity was high,averaging only 10% among sites. The ordinations indicated that elevation and geographic location were the dominant environ-mental gradients underlying the differences in the species composition among communities. The high beta diversity across the alpine of these mountains implies that conservation strategies ultimately will require the protection of large numbers of species over a large geographical area. However,prioritiza-tion should be given to areas where potential payoffs are greatest. Sites with high species richness also have a greater number of endemic species,and,by focusing efforts on these sites,conservation investments would be maximized by protecting the greatest number of unique species.展开更多
Cushion species occur in nearly all alpine environments worldwide. In past decades, the adaptive and ecosystem-engineering roles of such highly specialized life forms have been well studied. However, the adaptive stra...Cushion species occur in nearly all alpine environments worldwide. In past decades, the adaptive and ecosystem-engineering roles of such highly specialized life forms have been well studied. However, the adaptive strategies responsible for cushion species reproductive success and maintenance in severe alpine habitats remain largely unclear. In this study, we reviewed the current understanding of reproductive strategies and population persistence in alpine cushion species. We then present a preliminary case study on the sexual reproduction of Arenaria polytrichoides(Caryophyllaceae), a typical cushion species inhabiting high elevations of the Himalaya Hengduan Mountains, which is a hotspot for diversification of cushion species. Finally, we highlight the limitations of our current understanding of alpine cushion species reproduction and propose future directions for study.展开更多
Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradient...Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.展开更多
Though aboveground biomass(AGB) has an important contribution to the global carbon cycle,the information about storage and climatic effects of AGB is scare in Three-River Source Region(TRSR)shrub ecosystems. This stud...Though aboveground biomass(AGB) has an important contribution to the global carbon cycle,the information about storage and climatic effects of AGB is scare in Three-River Source Region(TRSR)shrub ecosystems. This study investigated AGB storage and its climatic controls in the TRSR alpine shrub ecosystems using data collected from 23 sites on the Tibetan Plateau from 2011 to 2013. We estimated the AGB storage(both shrub layer biomass and grass layer biomass) in the alpine shrubs as 37.49 Tg, with an average density of 1447.31 g m^(-2). Biomass was primarily accumulated in the shrub layer, which accounted for 92% of AGB, while the grass layer accounted for only 8%. AGB significantly increased with the mean annual temperature(P < 0.05). The effects of the mean annual precipitation on AGB were not significant. These results suggest that temperature,rather than precipitation, has significantly effects on of aboveground vegetation growth in the TRSR alpine shrub ecosystems. The actual and potential increase in AGB density was different due to global warming varies among different regions of the TRSR. We conclude that long-term monitoring of dynamic changes is necessary to improve the accuracy estimations of potential AGB carbon sequestration across the TRSR alpine shrub ecosystems.展开更多
Background:Insect pests are a significant threat to natural resources and social development.Modeling species assemblages of insect pests can predict spatiotemporal pest dynamics.However,research gaps remain regarding...Background:Insect pests are a significant threat to natural resources and social development.Modeling species assemblages of insect pests can predict spatiotemporal pest dynamics.However,research gaps remain regarding the mechanism for determining species assemblages of insect pests in alpine forest ecosystems.Here,we explored these determinants using a field investigation conducted for insect pests in a region of the Qinghai-Tibet Plateau.We assessed the species assemblages of insect pests in alpine forest ecosystems based on species co-occurrence patterns and species diversity(i.e.,observed diversity,dark diversity,community completeness,and species pool).A probabilistic model was used to test for statistically significant pairwise patterns of species co-occurrence using the presence-absence matrix of pest species based on species interactions.We used ordinary least squares regression modeling to explore relationships between abiotic factors(i.e.,climate factors and human influence)and species diversity.Results:Positive pest species interactions and many association links can occur widely across different investigation sites and parts of plant hosts in alpine forest ecosystems.We detected high dark diversity and low community completeness of insect pests in alpine forest ecosystems.High temperature and precipitation could promote pest species diversity,particularly dark diversity and species pools.Human influence could drive high levels of pest species diversity and lead to dark diversity and species pools.Community completeness could be an effective indicator for insect pest risk assessment.Conclusions:Our study provides new evidence for the determinants of insect pest species assemblages in alpine forest ecosystems from the perspectives of pest species interactions and abiotic factors.The findings of our study could reveal the mechanism for shaping species assemblages and support the prevention and control of insect pests in alpine forest ecosystems.展开更多
Microbial biomass and extracellular enzyme activities control the rate of soil organic carbon decomposition,thereby affecting soil carbon pool.However,seasonal dynamics of soil microbial properties at different depths...Microbial biomass and extracellular enzyme activities control the rate of soil organic carbon decomposition,thereby affecting soil carbon pool.However,seasonal dynamics of soil microbial properties at different depths of the soil profile remain unclear.In this study,we sampled soils in the early,middle and late growing season at different soil depths(0–100 cm)in two alpine ecosystems(meadow and shrubland)on the Tibetan Plateau.We measured plant belowground biomass,soil properties,microbial biomass and extracellular enzyme activities.We found that soil properties changed significantly with sampling time and soil depth.Specifically,most of soil properties consistently decreased with increasing soil depth,but inconsistently varied with sampling time.Moreover,root biomass and microbial biomass decreased with increasing soil depth and increased with sampling time during the growing season.However,microbial extracellular enzyme activities and their vector properties all changed with depth,but did not vary significantly with time.Taken together,these results show that soil properties,microbial biomass and extracellular enzyme activities mostly decline with increasing depth of the soil profile,and soil properties and microbial biomass are generally more variable during the growing season than extracellular enzyme activities across the soil profile in these alpine ecosystems.Further studies are needed to investigate the changes in soil microbial community composition and function at different soil depths over the growing season,which can enhance our mechanistic understanding of whole-profile soil carbon dynamics of alpine ecosystems under climate change.展开更多
In August 2003, we investigated spatial pattern in soil carbon and nutrients in the Alpine tundra of Changbai Moun-tain, Jilin Province, China. The analytical results showed that the soil C concentrations at different...In August 2003, we investigated spatial pattern in soil carbon and nutrients in the Alpine tundra of Changbai Moun-tain, Jilin Province, China. The analytical results showed that the soil C concentrations at different depths were significantly (p<0.05) higher in Meadow alpine tundra vegetation than that in other vegetation types; the soil C (including inorganic carbon) concentrations at layer below 10 cm are significantly (p<0.05) higher than at layer of 1020 cm among the different vegetation types; the spatial distribution of soil N concentration at top surface of 0-10 cm depth was similar to that at 1020 cm; the soil P concentrations at different depths were significantly (p<0.05) lower at Lithic alpine tundra vegetation than that at other vegetation types; soil K concentration was significantly (p<0.05) higher in Felsenmeer alpine tundra vegetation and Lithic alpine tundra vegetation than that in Typical alpine tundra, Meadow alpine tundra, and Swamp alpine tundra vegetations.. However, the soil K had not significant change at different soil depths of each vegetation type. Soil S concentration was dramatically higher in Meadow alpine tundra vegetation than that in other vegetation types. For each vegetation type, the ratios of C: N, C: P, C: K and C: S generally decreased with soil depth. The ratio of C: N was significantly higher at 010 cm than that at 1020 cm for all vegetation types except at the top layer of the Swamp alpine tundra vegetation. Our study showed that soil C and nutrients storage were significantly spatial heterogeneity.展开更多
Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and...Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and grazing on plant and soil properties in these alpine ecosystems. In this study, we reported the related research from manipulative experiment in 2010-2012 in the QTP. The aim of this study was to investigate the individual and combined effects of warming and clipping on plant and soil properties in the alpine meadow ecosystem. Infrared radiators were used to simulate climate warming starting in July 2010, while clipping was performed once in Octo- ber 2011 to simulate the local livestock grazing. The experiment was designed as a randomized block consisting of five replications and four treatments: control (CK), warming (W), clipping (C) and warming+clipping combination (WC). The plant and soil properties were investigated in the growing season of the alpine meadow in 2012. The results showed that W and WC treatments significantly decreased relative humidity at 20-cm height above ground as well as significantly increases air temperature at the same height, surface temperature, and soil temperature at the depth of 0-30 cm. However, the C treatment did not significantly decrease soil moisture and soil temperature at the depth of 0-60 cm. Relative to CK, vegetation height and species number increased significantly in W and WC treatment, respectively, while vegetation aboveground biomass decreased significantly in C treatment in the early growing season. However, vegetation cover, species diversity, belowground biomass and soil properties at the depth of 0-30 cm did not differ significantly in W, C and WC treatments. Soil moisture increased at the depth of 40-100 cm in W and WC treatments, while belowground biomass, soil activated carbon, organic carbon and total nitrogen increased in the 30-50 cm soil layer in W, C and WC treatments. Although the initial responses of plant and soil properties to experimental warming and clipping were slow and weak, the drought induced by the down- ward shift of soil moisture in the upper soil layers may induce plant belowground biomass to transfer to the deeper soil layers. This movement would modify the distributions of soil activated carbon, organic carbon and total nitrogen However, long-term data collection is needed to further explain this interesting phenomenon.展开更多
Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tib...Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tibet Plateau,China,calibrated with historical datasets of above-ground biomass production within the permafrost region's two main ecosystems,an ecosystem-biomass model was developed by employing empirical spatialdistribution models of the study region's precipitation,air temperature and soil temperature.This model was then successfully used to simulate the spatio-temporal variations in annual alpine ecosystem biomass production under climate change.For a 0.44°C decade-1 rise in air temperature,the model predicted that the biomasses of alpine meadow and alpine steppe remained roughly the same if annual precipitation increased by 8 mm per decade-1,but the biomasses were decreased by 2.7% and 2.4%,respectively if precipitation was constant.For a 2.2°C decade-1 rise in air temperature coupled with a 12 mm decade-1 rise in precipitation,the model predicted that the biomass of alpine meadow was unchanged or slightly increased,while that of alpine steppe was increased by 5.2%.However,in the absence of any rise in precipitation,the model predicted 6.8% and 4.6% declines in alpine meadow and alpine steppe biomasses,respectively.The response of alpine steppe biomass to the rising air temperatures and precipitation was significantly lesser and greater,respectively than that of alpine meadow biomass.A better understanding of the difference in alpine ecosystem biomass production under climate change is greatly significant with respect to the influence of climate change on the carbon and water cycles in the permafrost regions of the Qinghai-Tibet Plateau.展开更多
Fertilization has been shown to have suppressive effects on arbuscular mycorrhizal fungi(AMF) and root hemiparasites separately in numerous investigations, but its effects on AMF in the presence of root hemiparasites ...Fertilization has been shown to have suppressive effects on arbuscular mycorrhizal fungi(AMF) and root hemiparasites separately in numerous investigations, but its effects on AMF in the presence of root hemiparasites remain untested. In view of the contrasting nutritional effects of AMF and root hemiparasites on host plants, we tested the hypothesis that fertilization may not show strong suppressive effects on AMF when a plant community was infested by abundant hemiparasitic plants. Plants and soil samples were collected from experimental field plots in Bayanbulak Grassland, where N and P fertilizers had been applied for three continuous years for control against a spreading root hemiparasite, Pedicularis kansuensis. Shoot and root biomass of each plant functional group were determined. Root AMF colonization levels, soil spore abundance, and extraradical hyphae length density were measured for three soil depths(0 e10 cm, 10 e20 cm, 20 e30 cm). Partial 18 S r RNA gene sequencing was used to detect AMF diversity and community composition. In addition, we analyzed the relationship between relative abundance of different AMF genera and environmental factors using Spearman's correlation method. In contrast to suppressive effects reported by many previous studies, fertilization showed no significant effects on AMF root colonization or AMF species diversity in the soil. Instead, a marked increase in soil spore abundance and extraradical hyphae length density were observed. However, fertilization altered relative abundance and AMF composition in the soil. Our results support the hypothesis that fertilization does not significantly influence the abundance and diversity of AMF in a plant community infested by P. kansuensis.展开更多
Alpine tundra ecosystems have specific vegetation and environmental conditions that may affect soil phosphorus (P) composition and phosphatase activities. However, these effects are poody understood. This study used...Alpine tundra ecosystems have specific vegetation and environmental conditions that may affect soil phosphorus (P) composition and phosphatase activities. However, these effects are poody understood. This study used NaOH-EDTA extraction and solution ^31P nuclear magnetic resonance (NMR) spectroscopy to determine soil P composition and phosphatase activities, including acid phosphomonoesterase (AcP), phosphodiesterase (PD) and inorganic pyrophosphatase (IPP), in the alpine tundra of the Changbai Mountains at seven different altitudinal gradients (i.e., 2000 m, 2100 m, 2200 m, 2300 m, 2400 m, 2500 m, and 2600 m). The results show that total P (TP), organic P (OP), OP/TP, NaOH-EDTA extracted P and AcP, PD, and IPP activities over the altitude range of 2500-2600 m are significantly lower than those below 2400 m. The dominant extracted form of P is OP (73%0-83%) with a large proportion of monoesters (65%0-72%), whereas inorganic P is present in lower proportions (17%-27%). The activity of AcP is significantly positively correlated with the contents of soil OP, total carbon (TC), total nitrogen (TN), and TP (P 〈 0.05), indicating that the AcP is a more sensitive index for responding P nutrient storage than PD and IPP. Soil properties, P composition, and phosphatase activities decrease with increased altitude and soil pH. Our results indicate that the distribution of soil P composition and phosphatase activities along altitude and AcP may play an important role in P hydrolysis as well as have the potential to be an indicator of soil quality.展开更多
In an era of climate change,the availability of empirical data on alpine summit vegetation in the Himalaya is still scarce.Here we report the assessment of alpine summit flora in Gulmarg Wildlife Sanctuary,Kashmir Him...In an era of climate change,the availability of empirical data on alpine summit vegetation in the Himalaya is still scarce.Here we report the assessment of alpine summit flora in Gulmarg Wildlife Sanctuary,Kashmir Himalaya.We employed a globally standardized Multi-Summit Approach and four spatially isolated summits spanning an elevation gradient of 210 m(between 3530-3740 m a.s.l.)from natural treeline to nival zone were studied.Sampling of the summits was carried out in the year 2018 to collect floristic data together with records of soil temperature.A total of 142 vascular plant species were recorded in the sampled summits.Majority of the species were of herbaceous growth form and with perennial life span.Based on Raunkiaer’s life form,hemicryptophytes were the most dominant followed by therophytes and phanerophytes.The summit flora showed the predominance of narrow-endemic species,with broad-and non-endemics declining with elevation.A significant relationship between growth form,Raunkiaer’s life form,and the degree of endemism with elevation was observed.Both species diversity and soil temperature showed a monotonic decrease with increasing elevation.Interestingly,soil temperature clearly determined the magnitude of species diversity on the summits.Furthermore,based on floristic composition,the lowest summit had the highest dissimilarity with the rest of the summits.The present study employed globally standardized protocol to scientifically assess the patterns of plant diversity on the alpine mountain summits of Kashmir Himalaya,which in turn has wide implications towards long-term monitoring of climate change impact on alpine biodiversity in the rapidly warming Himalaya.展开更多
Meteorological elements and CO_(2) fluxes over alpine meadow ecosystem were observed continuously from 2004 to 2005 in Damxung Alpine Meadow Flux Station,China Flux Network.Based on the eddy covariance CO_(2) fluxes a...Meteorological elements and CO_(2) fluxes over alpine meadow ecosystem were observed continuously from 2004 to 2005 in Damxung Alpine Meadow Flux Station,China Flux Network.Based on the eddy covariance CO_(2) fluxes and meteorological data obtained,the relationships among the CO_(2) fluxes,the cloud amount,and the meteorological factors in alpine meadow ecosystem were explored and analyzed.Some conclusions can be drawn from the discussion with previous researches as following:(1)the cloud amount can affect the net ecosystem CO_(2) exchange(NEE)of alpine meadow on Tibetan Plateau;(2)the soil temperature sensitive to the cloud amount,is a major environmental controlling factor for NEE,and closely relates to the maximum of NEE.In the moming period with large cloud amount,the NEE reaches its maximum when the clearness index ranges from 0.5 to 0.7;yet in the afternoon it comes to the maximum with the index from 0.2 to 0.35.The span of soil temperature covers from 12 to 15℃as the NEE at its highest;(3)the scatterplots between NEE and photosynthetic available radiation(PAR)was a significant inverse triangle in the clear day,two different kinds of concave curves in the cloudy day,and strongly convergent rectangular hyperbola in the overcast day.These differences were controlled by the changes of light radiation and soil temperature.展开更多
Global climate change has been widely recognized as important factors that threaten biodiversity.Rhododendron species are not only famous woody ornamental plants worldwide but are also indispensable components in alpi...Global climate change has been widely recognized as important factors that threaten biodiversity.Rhododendron species are not only famous woody ornamental plants worldwide but are also indispensable components in alpine and subalpine vegetation in southwest China.However,the geographical distribution ranges response of this broad taxonomic group to future climate change remains not be fully understood.Herein,we studied the impact of climate change on the distribution of Rhododendron species in China by predicting the changes in their suitable habitats,centroid,and species richness under three climate change scenarios(SSP1-2.6,SSP2-4.5 and SSP5-8.5)in the 2090s.The species richness changes of Rhododendrons along altitude were also evaluated.In addition,we calculated the phylogenetic signals of distribution response to climate change.We found that the distribution responses of Rhododendron to climate change have weak phylogenetic signals.In the 2090s,the suitable habitats of about 87%of Rhododendron species will be reduced,77%of Rhododendron species are manifested as northward migration.The high species richness of Rhododendrons tends to migrate to transboundary areas with high altitudes in China.Some Rhododendron species with no concern previously should be taken seriously for their high risk of habitat loss under climate change.Thus,the urgent protection of Rhododendron species under climate change need to be paid more attention than previous acknowledged.We recommend carrying out the reintroduction of endangered species in future suitable habitat,strengthening the protection of transboundary areas with high species richness,and focusing on species with few concerns previously.展开更多
Foundational cushion plants can re-organize community structures and sustain a prominent proportion of alpine biodiversity,but they are sensitive to climate change.The loss of cushion species can have broad consequenc...Foundational cushion plants can re-organize community structures and sustain a prominent proportion of alpine biodiversity,but they are sensitive to climate change.The loss of cushion species can have broad consequences for associated biota.The potential plant community changes with the population dynamics of cushion plants remain,however,unclear.Using eight plant communities along a climatic and community successional gradient,we assessed cushion population dynamics,the underlying ecological constraints and hence associated plant community changes in alpine communities dominated by the foundational cushion plant Arenaria polytrichoides.The population dynamics of Arenaria are attributed to ecological constraints at a series of life history stages.Reproductive functions are constrained by increasing associated beneficiary plants;subsequent seedling establishment is constrained by temperature,water and light availability,extreme climate events,and interspecific competition;strong competitive exclusion may accelerate mortality and degeneration of cushion populations.Along with cushion dynamics,species composition,abundance and community structure gradually change.Once cushion plants completely degenerate,previously cushion-dominated communities shift to relatively stable communities that are overwhelmingly dominated by sedges.Climate warming may accelerate the degeneration process of A.polytrichoides.Degeneration of this foundational cushion plant will possibly induce massive changes in alpine plant communities and hence ecosystem functions in alpine ecosystems.The assessment of the population dynamics of foundation species is critical for an effective conservation of alpine biodiversity.展开更多
The Three-River Headwaters(TRH), which is the source area of Yangtze River, Yellow River and Lancang River, is vulnerable and sensitive, and its alpine ecosystem is considered an important barrier for China’s ecologi...The Three-River Headwaters(TRH), which is the source area of Yangtze River, Yellow River and Lancang River, is vulnerable and sensitive, and its alpine ecosystem is considered an important barrier for China’s ecological security. Understanding the impact of climate changes is essential for determining suitable measures for ecological environmental protection and restoration against the background of global climatic changes. However, different explanations of the interannual trends in complex alpine ecosystems have been proposed due to limited availability of reliable data and the uncertainty of the model itself. In this study, the remote sensing-process coupled model(GLOPEM-CEVSA) was used to estimate the net primary productivity(NPP) of vegetation in the TRH region from 2000 to 2012. The estimated NPP significantly and linearly correlated with the above-ground biomass sampled in the field(the multiple correlative coefficient R2 = 0.45, significant level P < 0.01) and showed better performance than the MODIS productivity product, i.e. MOD17 A3,(R2 = 0.21). The climate of TRH became warmer and wetter during 1990-2012, and the years 2000 to 2012 were warmer and wetter than the years1990–2000. Responding to the warmer and wetter climate, the NPP had an increasing trend of 13.7 g m^–2(10 yr)^–1 with a statistical confidence of 86%(P = 0.14). Among the three basins, the NPP of the Yellow River basin increased at the fastest rate of 17.44 g m^–2(10 yr)^–1(P = 0.158), followed by the Yangtze River basin, and the Lancang River, which was the slowest with a rate of 12.2 g m^–2(10 yr)^–1 and a statistical confidence level of only 67%. A multivariate linear regression with temperature and precipitation as the independent variables and NPP as the dependent variable at the pixel level was used to analyze the impacts of climatic changes on the trend of NPP. Both temperature and precipitation can explain the interannual variability of 83% in grassland NPP in the whole region, and can explain high, medium and low coverage of 78%, 84% and 83%, respectively, for grassland in the whole region. The results indicate that climate changes play a dominant role in the interannual trend of vegetation productivity in the alpine ecosystems on Qinghai-Tibetan Plateau. This has important implications for the formulation of ecological protection and restoration policies for vulnerable ecosystems against the background of global climate changes.展开更多
Paeonia delavayi is a wild tree peony species endemic to high-altitude regions in southwestern China.Recent agricultural land expansion,however,not only causes its dwindling population size,but also poses a severe thr...Paeonia delavayi is a wild tree peony species endemic to high-altitude regions in southwestern China.Recent agricultural land expansion,however,not only causes its dwindling population size,but also poses a severe threat to its long-term persistence.Since our knowledge of the reproductive biology of P.delavayi is very limited,and some management misconceptions have further exacerbated the already worrisome situation,the aim of the present study is to provide some scientific evidence regarding habitat preference and breeding system of P.delavayi,and to help correct some management misconceptions.Specifically,morphological traits of P.delavayi populations growing in two different habitats(i.e.,the open area versus forest understory),including basal stem diameter,plant height and flower numbers per plant,were measured and compared with each other.A range of floral manipulation experiments was further conducted to study the extent of self-compatibility and pollen limitation.The results showed that P.delavayi preferred the open habitat over forest understory as it generally grew bigger with thickerstems,and produced a higher number of flowers in the former habitat.Therefore,the open habitat should receive immediate priority for conservation action instead of being converted to agricultural land;also,P.delavayi is pollen limited,as evidenced by the fact that experimental flowers receiving supplemental non-self pollen generally displayed elevated seed production than flowers subjected to other treatments(e.g.,non-supplemental self pollen,non-supplemental non-self pollen and supplemental self pollen),which is consistent with reported observations that alpine plants are more likely to be pollen-limited than lowland plants.We suggest that human intervention might be necessary to guarantee the long-term persistence of P.delavayi as harsh alpine environment,intense competition for pollinators and different anthropogenic perturbations co-limit its reproductive success.展开更多
A study was conducted to examine the distribution pattern of four rhizomatous medicinal and aromatic plant species (MAPs) viz., Angelica glauca, Pleurospermum angelicoides, Rheum emodi and Arne- bia benthamii in dif...A study was conducted to examine the distribution pattern of four rhizomatous medicinal and aromatic plant species (MAPs) viz., Angelica glauca, Pleurospermum angelicoides, Rheum emodi and Arne- bia benthamii in different forest stands in Central Himalaya. Results show that A. glauca and P. angelicoides had a higher (50%) frequency at Chipkoan, Garpak and Phagati forest, R. emodi had a higher (60%) frequency at Rishikund, Suki and Himtoli, and A. benthamii had a higher (70%) frequency at Suki and Khambdhar The densities of A. glauca (0.6 plants·m -2 ) and P. angelicoides (0.5 plants·m -2 ) were higher at Chipkoan and Garpak sites than at other micro-sites, while densities of R. emodi (0.8 plants·m -2 ) and A. benthamii (1.0 plants·m -2 ) were higher at Suki and Khambdhar sites. A. glauca had highest total basal covers (TBC) (1.2 cm 2 ·m -2 ) at Chipkoan, P. angelicoides had highest TBC (0.92 cm 2 ·m -2) at Lati kharak site, A. benthamii had the highest TBC (6.48 cm 2 ·m -2 ) atKhambdhar, and R. emodi had highest TBC (4.53 cm 2 ·m -2 ) at Rishikund. For the four studied species, A. glauca showed a contagious distribution, P. angelicoides and R. emodi showed the random and A. benthamii showed the regular type of distribution.展开更多
Considerable efforts have been dedicated to desertification research in the arid and semi-arid drylands of central Asia. However,there are few quantitative studies in conjunction with proper qualitative evaluation con...Considerable efforts have been dedicated to desertification research in the arid and semi-arid drylands of central Asia. However,there are few quantitative studies in conjunction with proper qualitative evaluation concerning land degradation and aeolian activity in the alpine realm. In this study,spectral information from two Landsat-5 TM scenes(04.08.1994 and 28.07.2009,respectively) was combined with reference information obtained in the field to run supervised classifications of eight landscape types for both time steps. Subsequently,the temporal and spatial patterns of the alpine wetlands/grasslands evolutions in the Zoige Basin were quantified and assessed based on these two classification maps. The most conspicuous change is the sharp increase of ~627 km^2 degraded meadow. Concerning other land-covers,shallow wetland increases ~107 km^2 and aeolian sediments(mobile dunes and sand sheets) have an increase of ~30 km^2. Considering the deterioration,an obvious decrease of ~440 km^2 degraded wetland can be observed. Likewise,decrease of deep wetland(~78 km^2),humid meadow(~80 km^2) and undisturbed meadow(~88 km^2) were determined. These entire evolution matrixes undoubtedly hint a deteriorating tendency of the Zoige Basin ecosystem,which is characterized by significantly declined proportion of intact wetlands,meadow,rangeland and a considerable increase ofdegraded meadow and larger areas of mobile dunes. In particular,not only temporal alteration of the landcover categories,the spatial and topographical characteristics of the land degradation also deserves more attention. In the alpine rangelands,the higher terraces of the river channels along with their slopes are more liable to the degradation and desertification. This tendency has significantly impeded the nomadic and agriculture activities. The set of anthropozoogenic factors encompassing enclosures,overgrazing and trampling,rodent damaging and exceedingly ditching in the wetlands are assumed to be the main controlling mechanisms for the landscape degradation. A suite of strict protection policies is urgent and indispensable for self-regulation and restoration of the alpine meadow ecosystem. Controlling the size of livestock,less ditching in the rangeland,and the launching of a more strict nature reserve management by adjacent Ruoergai,Maqu and Hongyuan Counties would be practical and efficacious in achieving these objectives.展开更多
The alpine treeline ecotone is an important component of mountain ecosystems of the Nepal Himalaya; it plays a vital role in the livelihood of indigenous people,and provides ecosystem services. However,the region face...The alpine treeline ecotone is an important component of mountain ecosystems of the Nepal Himalaya; it plays a vital role in the livelihood of indigenous people,and provides ecosystem services. However,the region faces a problem of paucity of data on treeline characteristics at the regional and landscape scales. Therefore,we used Remote Sensing(RS),and Geographic Information Science(GIS) approaches to investigate cross-scale interactions in the treeline ecotone. Additionally,European Space Agency land cover map,International Center for Integrated Mountain Development(ICIMOD) land cover map,ecological map of Nepal,and United States Geological Survey Shuttle Radar Topography Mission-Digital Elevation Model were used to analyze treeline pattern at the regional scale. Digital Globe high-resolution satellite imagery of Barun(eastern Nepal) and Manang(central Nepal) were used to study treeline patterns at the landscape scale. Treeline elevation ranges from 3300-4300 m above sea level. Abies spectabilis,Betula utilis,and Pinus wallichiana are the main treeline-forming species in the Nepal Himalaya. There is an east to west treeline elevationgradient at the regional scale. No slope exposure is observed at the regional scale; however,at the landscape scale,slope exposure is present only in a disturbed area(Manang). Topography and human disturbance are the main treeline controlling factor in Barun and Manang respectively.展开更多
文摘Implementing conservation actions on-the-ground is not a straightforward process,especially when faced with high scientific uncertainty due to limited available information. This is especially acute in regions of the world that harbor many unique species that have not been well studied,such as the alpine zone of the Hengduan Mountains of Northwest Yunnan (NWY),a global biodiversity hotspot and site of The Nature Conservancy’s Yunnan Great Rivers Project. We conducted a quantitative,but rapid regional-level assessment of the alpine flora across NWY to provide a broad-based understanding of local and regional patterns of the alpine flora,the first large-scale analysis of alpine biodiversity patterns in this region. Multivariate analyses were used to classify the major plant community types and link community patterns to habitat variables. Our analysis indicated that most species had small distributions and/or small population sizes. Strong patterns emerged with higher diversity in the more northern mountains,but beta diversity was high,averaging only 10% among sites. The ordinations indicated that elevation and geographic location were the dominant environ-mental gradients underlying the differences in the species composition among communities. The high beta diversity across the alpine of these mountains implies that conservation strategies ultimately will require the protection of large numbers of species over a large geographical area. However,prioritiza-tion should be given to areas where potential payoffs are greatest. Sites with high species richness also have a greater number of endemic species,and,by focusing efforts on these sites,conservation investments would be maximized by protecting the greatest number of unique species.
基金supported by grants from the National Key Research and Development Program of China (grant no. 2017YFC0505200)the Major Program of National Natural Science Foundation of China (grant no. 31590823) to H Sunthe Natural Science Foundation of China (Grant no. 31500185 to JG Chen, 31470321 to Y Yang)
文摘Cushion species occur in nearly all alpine environments worldwide. In past decades, the adaptive and ecosystem-engineering roles of such highly specialized life forms have been well studied. However, the adaptive strategies responsible for cushion species reproductive success and maintenance in severe alpine habitats remain largely unclear. In this study, we reviewed the current understanding of reproductive strategies and population persistence in alpine cushion species. We then present a preliminary case study on the sexual reproduction of Arenaria polytrichoides(Caryophyllaceae), a typical cushion species inhabiting high elevations of the Himalaya Hengduan Mountains, which is a hotspot for diversification of cushion species. Finally, we highlight the limitations of our current understanding of alpine cushion species reproduction and propose future directions for study.
基金carried out in the framework of the 1331 Project of Cultural Ecology Collaborative Innovation Center in Wutai Mountain (00000342)co-financed by Program for the Philosophy and Social Sciences Research of Higher Learning Institutions of Shanxi (2022J027)+1 种基金Applied Basic Research Project of Shanxi Province (202203021221225)Basic Research Project of Xinzhou Science and Technology Bureau (20230501)。
文摘Climate warming profoundly affects plant biodiversity, community productivity, and soil properties in alpine and subalpine grassland ecosystems. However, these effects are poorly understood across elevational gradients in subalpine meadow ecosystems. To reveal the elevational patterns of warming effects on plant biodiversity, community structure, productivity, and soil properties, we conducted a warming experiment using open-top chambers from August 2019 to August 2022 at high(2764 m a. s. l.), medium(2631 m a. s. l.), and low(2544 m a. s. l.) elevational gradients on a subalpine meadow slope of Mount Wutai, Northern China. Our results showed that three years of warming significantly increased topsoil temperature but significantly decreased topsoil moisture at all elevations(P<0.05), and the percentage of increasing temperature and decreasing moisture both gradually raised with elevation lifting. Warming-induced decreasing proportions of soil organic carbon(SOC, by 19.24%), and total nitrogen(TN, by 24.56%) were the greatest at high elevational gradients. Experimental warming did not affect topsoil C: N, p H, NO_(3)^(-)-N, or NH_(4)^(+)-N at the three elevational gradients. Warming significantly increased species richness(P<0.01) and Shannon-Weiner index(P<0.05) at low elevational gradients but significantly decreased belowground biomass(P<0.05) at a depth of 0–10 cm at three elevational gradients. Warming caused significant increases in the aboveground biomass in the three elevational plots. Warming significantly increased the aboveground biomass of graminoids in medium(by 92.47%) and low(by 98.25%) elevational gradients, that of sedges in high(by 72.44%) and medium(by 57.16%) elevational plots, and that of forbs in high(by 75.88%), medium(by 34.38%), and low(by 74.95%) elevational plots. Species richness had significant linear correlations with SOC, TN, and C: N(P<0.05), but significant nonlinear responses to soil temperature and soil moisture in the warmed treatment(P<0.05). The warmed aboveground biomass had a significant nonlinear response to soil temperature and significant linear responses to soil moisture(P<0.05). This study provided evidence that altitude is a factor in sensitivity to climate warming, and these different parameters(e.g., plant species richness, Shannon-Weiner index, soil temperature, soil moisture, SOC, and TN) can be used to measure this sensitivity.
基金funded by the National Science and Technology Support Project (Grant No.2014BAC05B01)National Program on Basic Work Project of China (Grant No.2015FY11030001)+1 种基金Strategic Priority Research Program of CAS (Grant No.XDA0505030304)National Natural Science Foundation of China (Grant No.40801076)
文摘Though aboveground biomass(AGB) has an important contribution to the global carbon cycle,the information about storage and climatic effects of AGB is scare in Three-River Source Region(TRSR)shrub ecosystems. This study investigated AGB storage and its climatic controls in the TRSR alpine shrub ecosystems using data collected from 23 sites on the Tibetan Plateau from 2011 to 2013. We estimated the AGB storage(both shrub layer biomass and grass layer biomass) in the alpine shrubs as 37.49 Tg, with an average density of 1447.31 g m^(-2). Biomass was primarily accumulated in the shrub layer, which accounted for 92% of AGB, while the grass layer accounted for only 8%. AGB significantly increased with the mean annual temperature(P < 0.05). The effects of the mean annual precipitation on AGB were not significant. These results suggest that temperature,rather than precipitation, has significantly effects on of aboveground vegetation growth in the TRSR alpine shrub ecosystems. The actual and potential increase in AGB density was different due to global warming varies among different regions of the TRSR. We conclude that long-term monitoring of dynamic changes is necessary to improve the accuracy estimations of potential AGB carbon sequestration across the TRSR alpine shrub ecosystems.
基金supported by the National Natural Science Foundation of China(Nos.31800449 and 31800464)the project of the third forestry pest survey of Qinghai Province,China.
文摘Background:Insect pests are a significant threat to natural resources and social development.Modeling species assemblages of insect pests can predict spatiotemporal pest dynamics.However,research gaps remain regarding the mechanism for determining species assemblages of insect pests in alpine forest ecosystems.Here,we explored these determinants using a field investigation conducted for insect pests in a region of the Qinghai-Tibet Plateau.We assessed the species assemblages of insect pests in alpine forest ecosystems based on species co-occurrence patterns and species diversity(i.e.,observed diversity,dark diversity,community completeness,and species pool).A probabilistic model was used to test for statistically significant pairwise patterns of species co-occurrence using the presence-absence matrix of pest species based on species interactions.We used ordinary least squares regression modeling to explore relationships between abiotic factors(i.e.,climate factors and human influence)and species diversity.Results:Positive pest species interactions and many association links can occur widely across different investigation sites and parts of plant hosts in alpine forest ecosystems.We detected high dark diversity and low community completeness of insect pests in alpine forest ecosystems.High temperature and precipitation could promote pest species diversity,particularly dark diversity and species pools.Human influence could drive high levels of pest species diversity and lead to dark diversity and species pools.Community completeness could be an effective indicator for insect pest risk assessment.Conclusions:Our study provides new evidence for the determinants of insect pest species assemblages in alpine forest ecosystems from the perspectives of pest species interactions and abiotic factors.The findings of our study could reveal the mechanism for shaping species assemblages and support the prevention and control of insect pests in alpine forest ecosystems.
基金the National Natural Science Foundation of China(31971528 and 31988102).
文摘Microbial biomass and extracellular enzyme activities control the rate of soil organic carbon decomposition,thereby affecting soil carbon pool.However,seasonal dynamics of soil microbial properties at different depths of the soil profile remain unclear.In this study,we sampled soils in the early,middle and late growing season at different soil depths(0–100 cm)in two alpine ecosystems(meadow and shrubland)on the Tibetan Plateau.We measured plant belowground biomass,soil properties,microbial biomass and extracellular enzyme activities.We found that soil properties changed significantly with sampling time and soil depth.Specifically,most of soil properties consistently decreased with increasing soil depth,but inconsistently varied with sampling time.Moreover,root biomass and microbial biomass decreased with increasing soil depth and increased with sampling time during the growing season.However,microbial extracellular enzyme activities and their vector properties all changed with depth,but did not vary significantly with time.Taken together,these results show that soil properties,microbial biomass and extracellular enzyme activities mostly decline with increasing depth of the soil profile,and soil properties and microbial biomass are generally more variable during the growing season than extracellular enzyme activities across the soil profile in these alpine ecosystems.Further studies are needed to investigate the changes in soil microbial community composition and function at different soil depths over the growing season,which can enhance our mechanistic understanding of whole-profile soil carbon dynamics of alpine ecosystems under climate change.
基金This research was supported by National Natural Science Foundation of China (40173033) and Important Direction Project of Knowl-edge Innovation of Chinese Academy of Sciences (KZCX3-SW-423).
文摘In August 2003, we investigated spatial pattern in soil carbon and nutrients in the Alpine tundra of Changbai Moun-tain, Jilin Province, China. The analytical results showed that the soil C concentrations at different depths were significantly (p<0.05) higher in Meadow alpine tundra vegetation than that in other vegetation types; the soil C (including inorganic carbon) concentrations at layer below 10 cm are significantly (p<0.05) higher than at layer of 1020 cm among the different vegetation types; the spatial distribution of soil N concentration at top surface of 0-10 cm depth was similar to that at 1020 cm; the soil P concentrations at different depths were significantly (p<0.05) lower at Lithic alpine tundra vegetation than that at other vegetation types; soil K concentration was significantly (p<0.05) higher in Felsenmeer alpine tundra vegetation and Lithic alpine tundra vegetation than that in Typical alpine tundra, Meadow alpine tundra, and Swamp alpine tundra vegetations.. However, the soil K had not significant change at different soil depths of each vegetation type. Soil S concentration was dramatically higher in Meadow alpine tundra vegetation than that in other vegetation types. For each vegetation type, the ratios of C: N, C: P, C: K and C: S generally decreased with soil depth. The ratio of C: N was significantly higher at 010 cm than that at 1020 cm for all vegetation types except at the top layer of the Swamp alpine tundra vegetation. Our study showed that soil C and nutrients storage were significantly spatial heterogeneity.
基金financially supported by the Hundred Talent Program of Chinese Academy of Sciences and the National Natural Science Foundation of China (41301211, 41201195)
文摘Climate warming and livestock grazing are known to have great influences on alpine ecosystems like those of the Qinghai-Tibetan Plateau (QTP) in China. However, it is lacking of studies on the effects of warming and grazing on plant and soil properties in these alpine ecosystems. In this study, we reported the related research from manipulative experiment in 2010-2012 in the QTP. The aim of this study was to investigate the individual and combined effects of warming and clipping on plant and soil properties in the alpine meadow ecosystem. Infrared radiators were used to simulate climate warming starting in July 2010, while clipping was performed once in Octo- ber 2011 to simulate the local livestock grazing. The experiment was designed as a randomized block consisting of five replications and four treatments: control (CK), warming (W), clipping (C) and warming+clipping combination (WC). The plant and soil properties were investigated in the growing season of the alpine meadow in 2012. The results showed that W and WC treatments significantly decreased relative humidity at 20-cm height above ground as well as significantly increases air temperature at the same height, surface temperature, and soil temperature at the depth of 0-30 cm. However, the C treatment did not significantly decrease soil moisture and soil temperature at the depth of 0-60 cm. Relative to CK, vegetation height and species number increased significantly in W and WC treatment, respectively, while vegetation aboveground biomass decreased significantly in C treatment in the early growing season. However, vegetation cover, species diversity, belowground biomass and soil properties at the depth of 0-30 cm did not differ significantly in W, C and WC treatments. Soil moisture increased at the depth of 40-100 cm in W and WC treatments, while belowground biomass, soil activated carbon, organic carbon and total nitrogen increased in the 30-50 cm soil layer in W, C and WC treatments. Although the initial responses of plant and soil properties to experimental warming and clipping were slow and weak, the drought induced by the down- ward shift of soil moisture in the upper soil layers may induce plant belowground biomass to transfer to the deeper soil layers. This movement would modify the distributions of soil activated carbon, organic carbon and total nitrogen However, long-term data collection is needed to further explain this interesting phenomenon.
基金funded by the National Basic Research Program (also called 973 Program) (Grant No.2007CB411504)the National Natural Science Foundation of China (Grant No.40925002 and No.40730634)
文摘Alpine ecosystems in permafrost region are extremely sensitive to climate changes.To determine spatial pattern variations in alpine meadow and alpine steppe biomass dynamics in the permafrost region of the Qinghai-Tibet Plateau,China,calibrated with historical datasets of above-ground biomass production within the permafrost region's two main ecosystems,an ecosystem-biomass model was developed by employing empirical spatialdistribution models of the study region's precipitation,air temperature and soil temperature.This model was then successfully used to simulate the spatio-temporal variations in annual alpine ecosystem biomass production under climate change.For a 0.44°C decade-1 rise in air temperature,the model predicted that the biomasses of alpine meadow and alpine steppe remained roughly the same if annual precipitation increased by 8 mm per decade-1,but the biomasses were decreased by 2.7% and 2.4%,respectively if precipitation was constant.For a 2.2°C decade-1 rise in air temperature coupled with a 12 mm decade-1 rise in precipitation,the model predicted that the biomass of alpine meadow was unchanged or slightly increased,while that of alpine steppe was increased by 5.2%.However,in the absence of any rise in precipitation,the model predicted 6.8% and 4.6% declines in alpine meadow and alpine steppe biomasses,respectively.The response of alpine steppe biomass to the rising air temperatures and precipitation was significantly lesser and greater,respectively than that of alpine meadow biomass.A better understanding of the difference in alpine ecosystem biomass production under climate change is greatly significant with respect to the influence of climate change on the carbon and water cycles in the permafrost regions of the Qinghai-Tibet Plateau.
基金financially supported by the Natural Science Foundation of China (U1303201, No. 31400440 and No. 31370512)China Agriculture Research System (CARS-34)+2 种基金Natural Science Foundation of Yunnan Province (2016FB059)funding for Airong Li from The Youth Innovation Promotion Association of Chinese Academy of Sciencesthe Young Academic and Technical Leader Raising Foundation of Yunnan Province (2014HB047)
文摘Fertilization has been shown to have suppressive effects on arbuscular mycorrhizal fungi(AMF) and root hemiparasites separately in numerous investigations, but its effects on AMF in the presence of root hemiparasites remain untested. In view of the contrasting nutritional effects of AMF and root hemiparasites on host plants, we tested the hypothesis that fertilization may not show strong suppressive effects on AMF when a plant community was infested by abundant hemiparasitic plants. Plants and soil samples were collected from experimental field plots in Bayanbulak Grassland, where N and P fertilizers had been applied for three continuous years for control against a spreading root hemiparasite, Pedicularis kansuensis. Shoot and root biomass of each plant functional group were determined. Root AMF colonization levels, soil spore abundance, and extraradical hyphae length density were measured for three soil depths(0 e10 cm, 10 e20 cm, 20 e30 cm). Partial 18 S r RNA gene sequencing was used to detect AMF diversity and community composition. In addition, we analyzed the relationship between relative abundance of different AMF genera and environmental factors using Spearman's correlation method. In contrast to suppressive effects reported by many previous studies, fertilization showed no significant effects on AMF root colonization or AMF species diversity in the soil. Instead, a marked increase in soil spore abundance and extraradical hyphae length density were observed. However, fertilization altered relative abundance and AMF composition in the soil. Our results support the hypothesis that fertilization does not significantly influence the abundance and diversity of AMF in a plant community infested by P. kansuensis.
基金National Natural Science Foundation of China(No.41171241)
文摘Alpine tundra ecosystems have specific vegetation and environmental conditions that may affect soil phosphorus (P) composition and phosphatase activities. However, these effects are poody understood. This study used NaOH-EDTA extraction and solution ^31P nuclear magnetic resonance (NMR) spectroscopy to determine soil P composition and phosphatase activities, including acid phosphomonoesterase (AcP), phosphodiesterase (PD) and inorganic pyrophosphatase (IPP), in the alpine tundra of the Changbai Mountains at seven different altitudinal gradients (i.e., 2000 m, 2100 m, 2200 m, 2300 m, 2400 m, 2500 m, and 2600 m). The results show that total P (TP), organic P (OP), OP/TP, NaOH-EDTA extracted P and AcP, PD, and IPP activities over the altitude range of 2500-2600 m are significantly lower than those below 2400 m. The dominant extracted form of P is OP (73%0-83%) with a large proportion of monoesters (65%0-72%), whereas inorganic P is present in lower proportions (17%-27%). The activity of AcP is significantly positively correlated with the contents of soil OP, total carbon (TC), total nitrogen (TN), and TP (P 〈 0.05), indicating that the AcP is a more sensitive index for responding P nutrient storage than PD and IPP. Soil properties, P composition, and phosphatase activities decrease with increased altitude and soil pH. Our results indicate that the distribution of soil P composition and phosphatase activities along altitude and AcP may play an important role in P hydrolysis as well as have the potential to be an indicator of soil quality.
基金Financial supports to A.A.K.under the HIMADRI project(SAC/EPSA/ABHG/ALPINE/PRACRITI-II/01/13)by Space Applications Centre(SAC)-ISRO Ahmedbad(India)AICOPTAX project(F No.22018/12/2015/RE(Tax)by Mo EFCC,New Delhi(India)。
文摘In an era of climate change,the availability of empirical data on alpine summit vegetation in the Himalaya is still scarce.Here we report the assessment of alpine summit flora in Gulmarg Wildlife Sanctuary,Kashmir Himalaya.We employed a globally standardized Multi-Summit Approach and four spatially isolated summits spanning an elevation gradient of 210 m(between 3530-3740 m a.s.l.)from natural treeline to nival zone were studied.Sampling of the summits was carried out in the year 2018 to collect floristic data together with records of soil temperature.A total of 142 vascular plant species were recorded in the sampled summits.Majority of the species were of herbaceous growth form and with perennial life span.Based on Raunkiaer’s life form,hemicryptophytes were the most dominant followed by therophytes and phanerophytes.The summit flora showed the predominance of narrow-endemic species,with broad-and non-endemics declining with elevation.A significant relationship between growth form,Raunkiaer’s life form,and the degree of endemism with elevation was observed.Both species diversity and soil temperature showed a monotonic decrease with increasing elevation.Interestingly,soil temperature clearly determined the magnitude of species diversity on the summits.Furthermore,based on floristic composition,the lowest summit had the highest dissimilarity with the rest of the summits.The present study employed globally standardized protocol to scientifically assess the patterns of plant diversity on the alpine mountain summits of Kashmir Himalaya,which in turn has wide implications towards long-term monitoring of climate change impact on alpine biodiversity in the rapidly warming Himalaya.
基金Under the auspices of the Major Basic Research Development Program of China(Grant no.2005CB422005)the Knowledge Innovation Program of Chinese Academy of Sciences(Grant no.KSCXZ-YW-N-44)
文摘Meteorological elements and CO_(2) fluxes over alpine meadow ecosystem were observed continuously from 2004 to 2005 in Damxung Alpine Meadow Flux Station,China Flux Network.Based on the eddy covariance CO_(2) fluxes and meteorological data obtained,the relationships among the CO_(2) fluxes,the cloud amount,and the meteorological factors in alpine meadow ecosystem were explored and analyzed.Some conclusions can be drawn from the discussion with previous researches as following:(1)the cloud amount can affect the net ecosystem CO_(2) exchange(NEE)of alpine meadow on Tibetan Plateau;(2)the soil temperature sensitive to the cloud amount,is a major environmental controlling factor for NEE,and closely relates to the maximum of NEE.In the moming period with large cloud amount,the NEE reaches its maximum when the clearness index ranges from 0.5 to 0.7;yet in the afternoon it comes to the maximum with the index from 0.2 to 0.35.The span of soil temperature covers from 12 to 15℃as the NEE at its highest;(3)the scatterplots between NEE and photosynthetic available radiation(PAR)was a significant inverse triangle in the clear day,two different kinds of concave curves in the cloudy day,and strongly convergent rectangular hyperbola in the overcast day.These differences were controlled by the changes of light radiation and soil temperature.
基金This study was supported by the Science and Technology Development Fund of Guidance from the Central Government to Locals in Yunnan Province,China(No.202207AB110016)the Science and Technology Basic Resources Investigation Program of China(No.2022FY100205)+2 种基金National Natural Science Foundation of China(No.31870529)Major Program for Basic Research Project of Yunnan Province,China(No.202101BC070002)the Program for Excellent Young Talents,Yunnan University,China.
文摘Global climate change has been widely recognized as important factors that threaten biodiversity.Rhododendron species are not only famous woody ornamental plants worldwide but are also indispensable components in alpine and subalpine vegetation in southwest China.However,the geographical distribution ranges response of this broad taxonomic group to future climate change remains not be fully understood.Herein,we studied the impact of climate change on the distribution of Rhododendron species in China by predicting the changes in their suitable habitats,centroid,and species richness under three climate change scenarios(SSP1-2.6,SSP2-4.5 and SSP5-8.5)in the 2090s.The species richness changes of Rhododendrons along altitude were also evaluated.In addition,we calculated the phylogenetic signals of distribution response to climate change.We found that the distribution responses of Rhododendron to climate change have weak phylogenetic signals.In the 2090s,the suitable habitats of about 87%of Rhododendron species will be reduced,77%of Rhododendron species are manifested as northward migration.The high species richness of Rhododendrons tends to migrate to transboundary areas with high altitudes in China.Some Rhododendron species with no concern previously should be taken seriously for their high risk of habitat loss under climate change.Thus,the urgent protection of Rhododendron species under climate change need to be paid more attention than previous acknowledged.We recommend carrying out the reintroduction of endangered species in future suitable habitat,strengthening the protection of transboundary areas with high species richness,and focusing on species with few concerns previously.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0502)the Yunnan Applied Basic Research Project(202001AT070060)+2 种基金the National Natural Science Foundation of China(31271552)the CAS“Light of West China”Program,the Young Academic and Technical Leader Raising Foundation of Yunnan Province(202205AC160053)the Yunnan Innovation team project(202305AS350004)。
文摘Foundational cushion plants can re-organize community structures and sustain a prominent proportion of alpine biodiversity,but they are sensitive to climate change.The loss of cushion species can have broad consequences for associated biota.The potential plant community changes with the population dynamics of cushion plants remain,however,unclear.Using eight plant communities along a climatic and community successional gradient,we assessed cushion population dynamics,the underlying ecological constraints and hence associated plant community changes in alpine communities dominated by the foundational cushion plant Arenaria polytrichoides.The population dynamics of Arenaria are attributed to ecological constraints at a series of life history stages.Reproductive functions are constrained by increasing associated beneficiary plants;subsequent seedling establishment is constrained by temperature,water and light availability,extreme climate events,and interspecific competition;strong competitive exclusion may accelerate mortality and degeneration of cushion populations.Along with cushion dynamics,species composition,abundance and community structure gradually change.Once cushion plants completely degenerate,previously cushion-dominated communities shift to relatively stable communities that are overwhelmingly dominated by sedges.Climate warming may accelerate the degeneration process of A.polytrichoides.Degeneration of this foundational cushion plant will possibly induce massive changes in alpine plant communities and hence ecosystem functions in alpine ecosystems.The assessment of the population dynamics of foundation species is critical for an effective conservation of alpine biodiversity.
基金National Key Research and Development Program of China(2016YFC0500203)Science and Technology Program of Qinghai Province(2018-ZJ-T09,2017-SF-A6)
文摘The Three-River Headwaters(TRH), which is the source area of Yangtze River, Yellow River and Lancang River, is vulnerable and sensitive, and its alpine ecosystem is considered an important barrier for China’s ecological security. Understanding the impact of climate changes is essential for determining suitable measures for ecological environmental protection and restoration against the background of global climatic changes. However, different explanations of the interannual trends in complex alpine ecosystems have been proposed due to limited availability of reliable data and the uncertainty of the model itself. In this study, the remote sensing-process coupled model(GLOPEM-CEVSA) was used to estimate the net primary productivity(NPP) of vegetation in the TRH region from 2000 to 2012. The estimated NPP significantly and linearly correlated with the above-ground biomass sampled in the field(the multiple correlative coefficient R2 = 0.45, significant level P < 0.01) and showed better performance than the MODIS productivity product, i.e. MOD17 A3,(R2 = 0.21). The climate of TRH became warmer and wetter during 1990-2012, and the years 2000 to 2012 were warmer and wetter than the years1990–2000. Responding to the warmer and wetter climate, the NPP had an increasing trend of 13.7 g m^–2(10 yr)^–1 with a statistical confidence of 86%(P = 0.14). Among the three basins, the NPP of the Yellow River basin increased at the fastest rate of 17.44 g m^–2(10 yr)^–1(P = 0.158), followed by the Yangtze River basin, and the Lancang River, which was the slowest with a rate of 12.2 g m^–2(10 yr)^–1 and a statistical confidence level of only 67%. A multivariate linear regression with temperature and precipitation as the independent variables and NPP as the dependent variable at the pixel level was used to analyze the impacts of climatic changes on the trend of NPP. Both temperature and precipitation can explain the interannual variability of 83% in grassland NPP in the whole region, and can explain high, medium and low coverage of 78%, 84% and 83%, respectively, for grassland in the whole region. The results indicate that climate changes play a dominant role in the interannual trend of vegetation productivity in the alpine ecosystems on Qinghai-Tibetan Plateau. This has important implications for the formulation of ecological protection and restoration policies for vulnerable ecosystems against the background of global climate changes.
基金supported by China Special Fund for Forest Scientific Research in the Public Welfare (201204110)the National Natural Science Foundation of China (31460158)the Middle Aged Academic and Technical Leader Project of Yunnan Province (2010CI016)
文摘Paeonia delavayi is a wild tree peony species endemic to high-altitude regions in southwestern China.Recent agricultural land expansion,however,not only causes its dwindling population size,but also poses a severe threat to its long-term persistence.Since our knowledge of the reproductive biology of P.delavayi is very limited,and some management misconceptions have further exacerbated the already worrisome situation,the aim of the present study is to provide some scientific evidence regarding habitat preference and breeding system of P.delavayi,and to help correct some management misconceptions.Specifically,morphological traits of P.delavayi populations growing in two different habitats(i.e.,the open area versus forest understory),including basal stem diameter,plant height and flower numbers per plant,were measured and compared with each other.A range of floral manipulation experiments was further conducted to study the extent of self-compatibility and pollen limitation.The results showed that P.delavayi preferred the open habitat over forest understory as it generally grew bigger with thickerstems,and produced a higher number of flowers in the former habitat.Therefore,the open habitat should receive immediate priority for conservation action instead of being converted to agricultural land;also,P.delavayi is pollen limited,as evidenced by the fact that experimental flowers receiving supplemental non-self pollen generally displayed elevated seed production than flowers subjected to other treatments(e.g.,non-supplemental self pollen,non-supplemental non-self pollen and supplemental self pollen),which is consistent with reported observations that alpine plants are more likely to be pollen-limited than lowland plants.We suggest that human intervention might be necessary to guarantee the long-term persistence of P.delavayi as harsh alpine environment,intense competition for pollinators and different anthropogenic perturbations co-limit its reproductive success.
基金supported by financial assistantships from NATP-PB,NBPGR,Pusa Campus New Delhi
文摘A study was conducted to examine the distribution pattern of four rhizomatous medicinal and aromatic plant species (MAPs) viz., Angelica glauca, Pleurospermum angelicoides, Rheum emodi and Arne- bia benthamii in different forest stands in Central Himalaya. Results show that A. glauca and P. angelicoides had a higher (50%) frequency at Chipkoan, Garpak and Phagati forest, R. emodi had a higher (60%) frequency at Rishikund, Suki and Himtoli, and A. benthamii had a higher (70%) frequency at Suki and Khambdhar The densities of A. glauca (0.6 plants·m -2 ) and P. angelicoides (0.5 plants·m -2 ) were higher at Chipkoan and Garpak sites than at other micro-sites, while densities of R. emodi (0.8 plants·m -2 ) and A. benthamii (1.0 plants·m -2 ) were higher at Suki and Khambdhar sites. A. glauca had highest total basal covers (TBC) (1.2 cm 2 ·m -2 ) at Chipkoan, P. angelicoides had highest TBC (0.92 cm 2 ·m -2) at Lati kharak site, A. benthamii had the highest TBC (6.48 cm 2 ·m -2 ) atKhambdhar, and R. emodi had highest TBC (4.53 cm 2 ·m -2 ) at Rishikund. For the four studied species, A. glauca showed a contagious distribution, P. angelicoides and R. emodi showed the random and A. benthamii showed the regular type of distribution.
基金funded by the German Research Foundation (DFG) for the fieldwork and China Scholarship Council (201306190112)
文摘Considerable efforts have been dedicated to desertification research in the arid and semi-arid drylands of central Asia. However,there are few quantitative studies in conjunction with proper qualitative evaluation concerning land degradation and aeolian activity in the alpine realm. In this study,spectral information from two Landsat-5 TM scenes(04.08.1994 and 28.07.2009,respectively) was combined with reference information obtained in the field to run supervised classifications of eight landscape types for both time steps. Subsequently,the temporal and spatial patterns of the alpine wetlands/grasslands evolutions in the Zoige Basin were quantified and assessed based on these two classification maps. The most conspicuous change is the sharp increase of ~627 km^2 degraded meadow. Concerning other land-covers,shallow wetland increases ~107 km^2 and aeolian sediments(mobile dunes and sand sheets) have an increase of ~30 km^2. Considering the deterioration,an obvious decrease of ~440 km^2 degraded wetland can be observed. Likewise,decrease of deep wetland(~78 km^2),humid meadow(~80 km^2) and undisturbed meadow(~88 km^2) were determined. These entire evolution matrixes undoubtedly hint a deteriorating tendency of the Zoige Basin ecosystem,which is characterized by significantly declined proportion of intact wetlands,meadow,rangeland and a considerable increase ofdegraded meadow and larger areas of mobile dunes. In particular,not only temporal alteration of the landcover categories,the spatial and topographical characteristics of the land degradation also deserves more attention. In the alpine rangelands,the higher terraces of the river channels along with their slopes are more liable to the degradation and desertification. This tendency has significantly impeded the nomadic and agriculture activities. The set of anthropozoogenic factors encompassing enclosures,overgrazing and trampling,rodent damaging and exceedingly ditching in the wetlands are assumed to be the main controlling mechanisms for the landscape degradation. A suite of strict protection policies is urgent and indispensable for self-regulation and restoration of the alpine meadow ecosystem. Controlling the size of livestock,less ditching in the rangeland,and the launching of a more strict nature reserve management by adjacent Ruoergai,Maqu and Hongyuan Counties would be practical and efficacious in achieving these objectives.
文摘The alpine treeline ecotone is an important component of mountain ecosystems of the Nepal Himalaya; it plays a vital role in the livelihood of indigenous people,and provides ecosystem services. However,the region faces a problem of paucity of data on treeline characteristics at the regional and landscape scales. Therefore,we used Remote Sensing(RS),and Geographic Information Science(GIS) approaches to investigate cross-scale interactions in the treeline ecotone. Additionally,European Space Agency land cover map,International Center for Integrated Mountain Development(ICIMOD) land cover map,ecological map of Nepal,and United States Geological Survey Shuttle Radar Topography Mission-Digital Elevation Model were used to analyze treeline pattern at the regional scale. Digital Globe high-resolution satellite imagery of Barun(eastern Nepal) and Manang(central Nepal) were used to study treeline patterns at the landscape scale. Treeline elevation ranges from 3300-4300 m above sea level. Abies spectabilis,Betula utilis,and Pinus wallichiana are the main treeline-forming species in the Nepal Himalaya. There is an east to west treeline elevationgradient at the regional scale. No slope exposure is observed at the regional scale; however,at the landscape scale,slope exposure is present only in a disturbed area(Manang). Topography and human disturbance are the main treeline controlling factor in Barun and Manang respectively.