期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of soil archaea on N_(2)O emission in alpine permafrost
1
作者 YuZheng Gu ChenJie Dong +5 位作者 ShengYun Chen JingWei Jin PeiZhi Yang JianWei Chen PeiJie Wei Ali Bahadur 《Research in Cold and Arid Regions》 CSCD 2024年第2期45-62,共18页
Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,espec... Soil microbial communities are pivotal in permafrost biogeochemical cycles,yet the variations of abundant and rare microbial taxa and their impacts on greenhouse gas emissions in different seasons,remain elusive,especially in the case of soil archaea.Here,we conducted a study on soil abundant and rare archaeal taxa during the growing and non-growing seasons in the active layer of alpine permafrost in the Qinghai-Tibetan Plateau.The results suggested that,for the archaeal communities in the sub-layer,abundant taxa exhibited higher diversity,while rare taxa maintained a more stable composition from the growing to non-growing season.Water soluble organic carbon and soil porosity were the most significant environmental variables affecting the compositions of abundant and rare taxa,respectively.Stochastic and deterministic processes dominated the assemblies of rare and abundant taxa,respectively.The archaeal ecological network influenced N_(2)O flux through different modules.Rare taxa performed an essential role in stabilizing the network and exerting important effects on N_(2)O flux.Our study provides a pioneering and comprehensive investigation aimed at unravelling the mechanisms by which archaea or other microorganisms influence greenhouse gas emissions in the alpine permafrost. 展开更多
关键词 alpine permafrost Abundant and rare archaea Assembly processes Co-occurrence network N_(2)O flux
下载PDF
Non-climate environmental factors matter to Holocene dynamics of soil organic carbon and nitrogen in an alpine permafrost wetland,Qinghai‒Tibet Plateau 被引量:1
2
作者 Qing-Feng WANG Hui-Jun JIN +3 位作者 Cui-Cui MU Xiao-Dong WU Lin ZHAO Qing-Bai WU 《Advances in Climate Change Research》 SCIE CSCD 2023年第2期213-225,共13页
Studies on the responses of soil organic carbon(SOC)and nitrogen dynamics to Holocene climate and environment in permafrost peatlands and/or wetlands might serve as analogues for future scenarios,and they can help pre... Studies on the responses of soil organic carbon(SOC)and nitrogen dynamics to Holocene climate and environment in permafrost peatlands and/or wetlands might serve as analogues for future scenarios,and they can help predict the fate of the frozen SOC and nitrogen under a warming climate.To date,little is known about these issues on the Qinghai‒Tibet Plateau(QTP).Here,we investigated the accumulations of SOC and nitrogen in a permafrost wetland on the northeastern QTP,and analyzed their links with Holocene climatic and environmental changes.In order to do so,we studied grain size,soil organic matter,SOC,and nitrogen contents,bulk density,geochemical parameters,and the accelerator mass spectrometry(AMS)^(14)C dating of the 216-cm-deep wetland profile.SOC and nitrogen contents revealed a general uptrend over last 7300 years.SOC stocks for depths of 0-100 and 0-200 cm were 50.1 and 79.0 kgC m^(-2),respectively,and nitrogen stocks for the same depths were 4.3 and 6.6 kgN m^(-2),respectively.Overall,a cooling and drying trend for regional climate over last 7300 years was inferred from the declining chemical weathering and humidity index.Meanwhile,SOC and nitrogen accumulated rapidly in 1110e720 BP,while apparent accumulation rates of SOC and nitrogen were much lower during the other periods of the last 7300 years.Consequently,we proposed a probable conceptual framework for the concordant development of syngenetic permafrost and SOC and nitrogen accumulations in alpine permafrost wetlands.This indicates that,apart from controls of climate,non-climate environmental factors,such as dust deposition and site hydrology,matter to SOC and nitrogen accumulations in permafrost wetlands.We emphasized that environmental changes driven by climate change have important impacts on SOC and nitrogen accumulations in alpine permafrost wetlands.This study could provide data support for regional and global estimates of SOC and nitrogen pools and for global models on carbon‒climate interactions that take into account of alpine permafrost wetlands on the northeastern QTP at mid-latitudes. 展开更多
关键词 Syngenetic permafrost in alpine wetland Soil organic carbon pool Nitrogen accumulation Chemical weathering Dust deposition HOLOCENE
原文传递
Changes in hydrological processes in the headwater area of Yellow River,China during 1956-2019 under the influences of climate change,permafrost thaw and dam 被引量:2
3
作者 Qiang MA Hui-Jun JIN +4 位作者 Qing-Bai WU Alla YUROVA Si-Hai LIANG Raul DavidȘERBAN Yong-Chao LAN 《Advances in Climate Change Research》 SCIE CSCD 2023年第2期237-247,共11页
Discharge characteristics are crucial for detecting changes in hydrological processes.Recently,the river hydrology)in the Headwater Area of the Yellow River(HAYR)has exhibited erratic regimes(e.g.,monotonously declini... Discharge characteristics are crucial for detecting changes in hydrological processes.Recently,the river hydrology)in the Headwater Area of the Yellow River(HAYR)has exhibited erratic regimes(e.g.,monotonously declining/low/high hydrograph,even with normal precipitation)under the effects of climate change,permafrost thaw and changes in dam operation.This study integrates hydroclimatic variables(air temperature,precipitation,and potential evapotranspiration)with anthropogenic dam operation and permafrost degradation impact data to systematically examine the mechanisms of these hydrological process changes during 1956–2019.The results show the following:1)compared with the pre-dammed gauged flow,dam construction(January 1998–January 2000)and removal of dam(September 2018–August 2019)induced monotonously low(−17.2 m^(3) s^(−1);−61%)and high(+54.6 m^(3) s^(−1);+138%)hydrographs,respectively;2)hydroclimatic variables mainly controlled the summer–autumn hydrological processes in the HAYR;3)the monotonous decline of the hydrograph of Yellow River in the HAYR in some hydrological years(e.g.,1977,1979,1990 and 1995)was closely related with unusually high atmospheric demands of evaporation and low-intense rainfall during summer–autumn seasons;and 4)the lengthening of subsurface hydrological pathways and residence time,permafrost degradation reduced the recession coefficient(−0.002 per year)of winter flow and altered the hydrological regimes of seasonal rivers,which resulted in flattened hydrographs that reduced and delayed the peak flow(of 0.05 mm per year and 1.65 d per year,respectively)as well as boosted the winter baseflow(0.01 mm per year).This study can provide updated and systematic understanding of changing hydrological processes in typical alpine catchments on northeastern Qinghai–Tibet Plateau,China under a warming climate. 展开更多
关键词 Degradation of alpine permafrost DAM Changing hydrological processes PRECIPITATION Streamflow EVAPORATION
原文传递
Viscous creep of ice-rich permafrost debris in a recently uncovered proglacial area in the Tianshan Mountains, China 被引量:2
4
作者 Yu ZHOU Guo-Yu LI +5 位作者 Hui-Jun JIN Sergey SMARCHENKO Wei MA Qing-Song DU Jin-Ming LI Dun CHEN 《Advances in Climate Change Research》 SCIE CSCD 2022年第4期540-553,共14页
Since the Little Ice Age and as a consequence of climate warming,many recently deglaciated forefields have become and will continue to evolve into large ice-debris complexes exposed to periglacial processes and enviro... Since the Little Ice Age and as a consequence of climate warming,many recently deglaciated forefields have become and will continue to evolve into large ice-debris complexes exposed to periglacial processes and environment.Such transitional processes have significant implications for geomorphologic shaping and water supply for the downstream communities,especially in arid regions,but our understanding of their evolutionary processes and their potential geomorphic and hydrological impacts is stil limited.A landform transition from partly debris-covered glaciers to ice-rich permafrost debris undergoing slow viscous creep was revealed in the Aerzailaikunai Valley in the eastern Tianshan Mountains in China based on the results of in-situ observations and measurements(boreholes,ground temperature monitoring,electrical resistivity tomography surveys,and continuous global positioning system measurements,among others).The internal structure of ice-tll mixture contains pure ice layers,supersaturated frozen sands with ice lenses,and ice-bearing blocks with maximum volumetric contents of heterogeneous ice at 35%-60%.Beneath an 1.5-m-thick active layer,permafrost reached far into the underlying bedrock with the mean annual ground temperature of-2.1℃ at the depth of 20 m.The higher surface velocities(with an accumulative displacement of 65 mm from October 2019 to May 2020)and extremely high electrical resistivity(several million Ω m)of the debris-covered glacier margin were in sharp contrast to those of the progressively stabilizing ground surface(up to 16 mm)and the lower zones with relatively smaler electrical resistivity(several thousand Ω m).Combined with the borehole stratigraphy(higher rock content),monitored ground temperatures(permafrost environment),lower electrical resistance(ice-rich moraine),and continuous global positioning system results(viscous creeping),this study documents a transition from glacial to periglacial conditions,materials and processes characteristic of cold-dry ice-clad mountains,and reinforces the theory of the transition from debris-covered glaciers into morainically originated rock glaciers. 展开更多
关键词 alpine permafrost Viscous creep Debris-covered glacier margins Climate warming Landform transition Evolution of rock glacier
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部