期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation 被引量:2
1
作者 FENG Xu-yu PU Jing-xuan +5 位作者 LIU Hai-jun WANG Dan LIU Yu-hang QIAO Shu-ting LEI Tao LIU Rong-hao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期897-907,共11页
Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse e... Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse experiment was conducted to evaluate the effect of different fertigation frequencies on the distribution of soil moisture and nutrients and tomato yield under ADF.The treatments included three ADF frequencies with intervals of 3 days (F3),6 days (F6) and 12 days (F12),and conventional drip fertigation as a control (CK),which was fertilized once every 6 days.For the ADF treatments,two drip tapes were placed 10 cm away on each side of the tomato row,and alternate drip irrigation was realized using a manual valve on the distribution tapes.For the CK treatment,a drip tape was located close to the roots of the tomato plants.The total N application rate of all treatments was 180 kg ha^(-1).The total irrigation amounts applied to the CK treatment were450.6 and 446.1 mm in 2019 and 2020,respectively;and the irrigation amounts applied to the ADF treatments were 60%of those of the CK treatment.The F3 treatment resulted in water and N being distributed mainly in the 0–40-cm soil layer with less water and N being distributed in the 40–60-cm soil layer.The F6 treatment led to 21.0 and 29.0%higher 2-year average concentration of mineral N in the 0–20 and 20–40-cm soil layer,respectively and a 23.0%lower N concentration in the 40–60-cm soil layer than in the CK treatment.The 2-year average tomato yields of the F3,F6,F12,and CK treatments were 107.5,102.6,87.2,and 98.7 t ha^(-1),respectively.The tomato yield of F3 was significantly higher (23.3%) than that in the F12 treatment,whereas there was no significant difference between the F3 and F6 treatment.The F6 treatment resulted in yield similar to the CK treatment,indicating that ADF could maintain tomato yield with a 40%saving in water use.Based on the distribution of water and N,and tomato yield,a fertigation frequency of 6 days under ADF should be considered as a water-saving strategy for greenhouse tomato production. 展开更多
关键词 alternate partial root-zone irrigation drip fertigation soil water soil mineral content tomato yield
下载PDF
Effects of Alternative Partial Root-zone Irrigation and Nitrogen Fertilizer on Plukenetia volubilis Seedlings
2
作者 耿艳菁 蔡传涛 蔡志全 《Agricultural Science & Technology》 CAS 2016年第4期890-895,共6页
This study was aimed to investigate the effects of alternative partial rootzone irrigation and nitrogen fertilizer on the potted seedlings of Plukenetia volubilis.A total of 7 treatments were designed with three facto... This study was aimed to investigate the effects of alternative partial rootzone irrigation and nitrogen fertilizer on the potted seedlings of Plukenetia volubilis.A total of 7 treatments were designed with three factors, i.e., irrigation amount, irrigation mode and nitrogen fertilizer. The growth, photosynthesis and water use efficiency were analyzed. The results showed that compared with those under full irrigation, the biomass and water consumption under alternative partial root-zone irrigation were reduced by 5% and 75%, respectively, and the water use efficiency was increased by 60%. Under severe drought conditions, the root cap ratio in the nitrogen fertilizer treatment group was increased by 30%; the leaf area index, photosynthetic rate and biomass under alternative partial root-zone irrigation were reduced by 38%, 9% and 18%, respectively. It indicates that under severe drought conditions, alternative partial root-zone irrigation is not suitable to be matched with application of nitrogen fertilizer. In short, under moderate drought conditions, alternative partial root-zone irrigation could reduce transpiration and improve water use efficiency, and it is an effective water-saving irrigation technology for the plantation of P.volubilis plants. 展开更多
关键词 Plukenetia volubilis L. alternative partial root-zone irrigation Nitrogen fertilizer GROWTH Water-use efficiency
下载PDF
Alternate Furrow Irrigation: A Practical Way to Improve Grape Quality and Water Use Efficiency in Arid Northwest China 被引量:6
3
作者 DU Tai-sheng KANG Shao-zhong +1 位作者 YAN Bo-yuan ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第3期509-519,共11页
Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region ... Field experiments were conducted for two years to investigate the benefits of alternate furrow irrigation on fruit yield, quality and water use efficiency of grape (Vitis vinifera L. cv. Rizamat) in the arid region of Northwest China. Two irrigation treatments were included, i.e., conventional furrow irrigation (CFI, two root-zones were simultaneously irrigated during the consecutive irrigation) and alternate partial root-zone furrow irrigation (AFI, two root-zones were alternatively irrigated during the consecutive irrigation). Results indicate that AFI maintained similar photosynthetic rate (Pn) but with a reduced transpiration rate when compared to CFI. As a consequence, AFI improved water use efficiency based on evapotranspiration (WUEEr, fruit yield over water consumed) and irrigation (WUE~, fruit yield over water irrigated) by 30.0 and 34.5%, respectively in 2005, and by 12.7 and 17.7%, respectively in 2006. AFI also increased the edible percentage of berry by 2.91-4.79% significantly in both years. Vitamin C (Vc) content content of berry was increased by 25.6-37.5%, and tritrated acidity (TA) was reduced by 9.5-18.1% in AFI. This resulted in an increased total soluble solid content (TSS) to TA ratio (TSS/TA) by 11.5-16.7% when compared to CFI in both years. Our results indicate that alternate furrow irrigation is a practical way to improve grape fruit quality and water use efficiency for irrigated crops in arid areas. 展开更多
关键词 alternate furrow irrigation partial root-zone irrigation fruit yield water use efficiency fruit quality grape(Fitis vinifera L.
下载PDF
Stem flow of seed-maize under alternate furrow irrigation and double-row ridge planting in an arid region of Northwest China 被引量:3
4
作者 BO Xiao-dong DU Tai-sheng +2 位作者 DING Ri-sheng TONG Ling LI Si-en 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第7期1434-1445,共12页
Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bot... Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (e), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP〉MP〉NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environ- mental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales. 展开更多
关键词 stem flow alternate partial root-zone furrow irrigation double-row ridge planting seed-maize
下载PDF
Influences of alternate partial root-zone irrigation and urea rate on water-and nitrogen-use efficiencies in tomato 被引量:5
5
作者 Liu Xiaogang Li Fusheng +2 位作者 Zhang Fucang Cai Huanjie Yang Qiliang 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第6期94-102,共9页
Traditional water and fertilizer inputs are often much higher than the actual demands of tomato,which causes a reduction in water-and fertilizer-use efficiencies.To investigate the advantage of alternate partial root-... Traditional water and fertilizer inputs are often much higher than the actual demands of tomato,which causes a reduction in water-and fertilizer-use efficiencies.To investigate the advantage of alternate partial root-zone irrigation(AI)on water-and nitrogen(N)-use efficiencies of tomato modified by water and N management,taking conventional irrigation(CI)as the control,the effects of AI on root morphology and activity,fruit yield and water and N use efficiency were studied using pot experiments.There were four combinations of irrigation levels and growing stages of tomato for AI,i.e.AI_(1)(high water(W_(H))from blooming to harvest stage(BHS)),AI_(2)(W_(H)from blooming to fruit setting stage(BFS)and low water(W_(L))at the harvest stage(HS)),AI_(3)(W_(L)at BFS and W_(H)at HS)and AI_(4)(W_(L)at BHS)at three urea rates,i.e.low urea rate(NL),middle urea rate(N_(M))and high urea rate(N_(H))in the form of urea.Irrigation quotas for W_(H)and W_(L)in AI at BFS or HS were 80%and 60%of that in CI,respectively.Compared to CI,AI decreased water consumption by 16.0%-33.1%and increased water use efficiency of yield(WUE_(y))and dry mass(WUE_(d))by 6.7%-11.9%and 10.2%-15.9%,respectively.AI_(1)did not decline yield,total N uptake(TNU)and N use efficiency(NUE)significantly.Compared to NL,N_(M)enhanced tomato yield,TNU,WUE_(y)and WUE_(d)by 28.5%,35.3%,22.6%and 16.3%,respectively.Compared to CINL,AI_(1)N_(M)reduced water consumption by 12.5%,but increased tomato yield,TNU,WUE_(y)and WUE_(d)by 35.5%,58.4%,54.4%and 53.7%,respectively.Therefore,AI_(1)can improve water use efficiency and total N uptake of tomato simultaneously at medium urea rate. 展开更多
关键词 alternate partial root-zone irrigation nitrogen level nitrogen uptake TOMATO water use efficiency YIELD
原文传递
Alternate partial root-zone irrigation with high irrigation frequency improves root growth and reduces unproductive water loss by apple trees in arid north-west China 被引量:2
6
作者 Shaoqing DU Ling TONG +4 位作者 Shaozhong KANG Fusheng LI Taisheng DU Sien LI Risheng DING 《Frontiers of Agricultural Science and Engineering》 2018年第2期188-196,共9页
Alternate partial root-zone irrigation(APRI)can improve water use efficiency in arid areas. However,the effectiveness and outcomes of different frequencies of APRI on water uptake capacity and physiological water use ... Alternate partial root-zone irrigation(APRI)can improve water use efficiency in arid areas. However,the effectiveness and outcomes of different frequencies of APRI on water uptake capacity and physiological water use have not been reported. A two-year field experiment was conducted with two irrigation amounts(400 and500 mm) and three irrigation methods(conventional irrigation, APRI with high and low frequencies). Root length density, stomatal conductance, photosynthetic rate,transpiration rate, leaf water use efficiency, midday stem and leaf water potentials were measured. The results show that in comparison with conventional irrigation, APRI with high frequency significantly increased root length density and decreased water potentials and stomatal conductance.No differences in the above indicators between the two APRI frequencies were detected. A significantly positive relationship between stomatal conductance and root length density was found under APRI. Overall, alternate partial root-zone irrigation with high frequency has a great potential to promote root growth, expand water uptake capacity and reduce unproductive water loss in the arid apple production area. 展开更多
关键词 alternate partial root-zone irrigation apple tree leaf water use efficiency root length density stomatal conductance water potential
原文传递
Evaluation of tomato fruit quality response to water and nitrogen management under alternate partial root-zone irrigation 被引量:1
7
作者 Yang Hui Cao Hongxia +3 位作者 Hao Xinmei Guo Lijie Li Hongzheng Wu Xuanyi 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第5期85-94,共10页
A pot experiment was conducted to investigate the effects of different water and nitrogen supply amounts on the comprehensive assessment of tomato fruit quality and root growth parameters under alternate partial root-... A pot experiment was conducted to investigate the effects of different water and nitrogen supply amounts on the comprehensive assessment of tomato fruit quality and root growth parameters under alternate partial root-zone irrigation.Three upper irrigation limitations(i.e.70%(W1),80%(W2)and 90%(W3)of field capacity,respectively)and three N-fertilizer levels(i.e.0.18(N1),0.30(N2)and 0.42(N3)g/kg soil,respectively)were arranged with a randomized complete block design,and alternate partial root-zone irrigation method was applied.Results showed that fruit yields under deficit irrigation(W1 and W2)were decreased by 6.9%and 2.0%respectively compared with W3 under N1 level.Yields of tomato under W1N1 and W1N2 combinations were also reduced by 10.3%and 7.2%,respectively compared with W1N3 combination.Root dry weight,root length,root surface area and root volume were all increased in W1N2 treatment.According to two-way ANOVA,the root parameters except root dry weight,were extremely sensitive to water,nitrogen and the cross effect of the two factors.TSS(total soluble solids),SS(soluble sugars)and OA(organic acid)in the fruits increased with the decrease in irrigation water,OA and NC reduced with decreasing amount of nitrogen.Moreover,within an appropriate range,as more irrigation water and nitrogen were applied,the higher VC(vitamin C)and lycopene contents were identified in the fruits.Eventually,the combinational evaluation method(i.e.entropy method and gray relational analysis)showed that W2N2 ranked highest in comprehensive fruit quality.Therefore,considering the tradeoff between fruit comprehensive quality and yields,upper irrigation limitation of 80%θf and N-fertilizer of 0.30 g/kg soil with alternate partial root-zone irrigation was the optimal cultivation strategy for the greenhouse tomato in autumn-winter season in northwest China. 展开更多
关键词 greenhouse tomato alternate partial root-zone irrigation water and nitrogen root growth comprehensive fruit quality
原文传递
Biochar and alternate partial root-zone irrigation greatly enhance the effectiveness of mulberry in remediating lead-contaminated soils
8
作者 Lei Wang Qing-Lai Dang Binyam Tedla 《Journal of Plant Ecology》 SCIE CSCD 2020年第6期757-764,共8页
Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulat... Aims Soil lead contamination has become increasingly serious and phytoremediation can provide an effective way to reclaim the contaminated soils.This study aims to examine the growth,lead resistance and lead accumulation of mulberry(Morus alba L.)seedlings at four levels of soil lead contamination with or without biochar addition under normal or alternative partial root-zone irrigation(APRI).Methods We conducted a three-factor greenhouse experiment with biochar(with vs.without biochar addition),irrigation method(APRI vs.normal irrigation)and four levels of soil lead(0,50,200 and 800 mg·kg^(-1)).The performance of the seedlings under different treatments was evaluated by measuring growth traits,osmotic substances,antioxidant enzymes and lead accumulation and translocation.Important Findings The results reveal that mulberry had a strong ability to acclimate to soil lead contamination,and that biochar and APRI synergistically increased the biomass and surface area of absorption root across all levels of soil lead.The seedlings were able to resist the severe soil lead contamination(800 mg·kg^(-1) Pb)by adjusting glutathione metabolism,and enhancing the osmotic and oxidative regulating capacity via increasing proline content and the peroxidase activity.Lead ions in the seedlings were primarily concentrated in roots and exhibited a dose–effect associated with the lead concentration in the soil.Pb,biochar and ARPI interactively affected Pb concentrations in leaves and roots,translocation factor and bioconcentration.Our results suggest that planting mulberry trees in combination with biochar addition and APRI can be used to effectively remediate lead-contaminated soils. 展开更多
关键词 Pb-contaminated soil PHYTOREMEDIATION Morus alba L. alternate partial root-zone irrigation BIOCHAR
原文传递
不同灌水方式对‘寒富’苹果叶片光合功能和抗氧化酶活性的影响 被引量:15
9
作者 马怀宇 吕德国 +2 位作者 刘国成 秦嗣军 康立权 《生态学杂志》 CAS CSCD 北大核心 2012年第10期2534-2540,共7页
以‘寒富’苹果为试材,研究半根交替灌水、半根灌水及干旱处理对苹果叶片光合功能和抗氧化酶活性的影响。结果表明:与对照(常规灌水)相比,3种亏缺灌水处理对叶片净光合速率(Pn)和气孔导度(Gs)的抑制作用表现为干旱处理>半根灌水处理&... 以‘寒富’苹果为试材,研究半根交替灌水、半根灌水及干旱处理对苹果叶片光合功能和抗氧化酶活性的影响。结果表明:与对照(常规灌水)相比,3种亏缺灌水处理对叶片净光合速率(Pn)和气孔导度(Gs)的抑制作用表现为干旱处理>半根灌水处理>半根交替灌水处理。半根交替灌水、半根灌水和干旱处理的叶绿素含量均是先升高,在第9天出现峰值后明显降低,干旱处理的叶绿素含量一直是最低的。3个处理的叶片脯氨酸含量随着处理时间的延长持续升高,干旱处理的脯氨酸含量最高,半根交替灌水处理的最低。3个处理的抗氧化酶活性变化各异,干旱和半根灌水处理的SOD酶活性先显著升高,在第9天出现峰值后迅速降低,半根交替灌水处理提高了SOD酶活性且一直较稳定;半根灌水和半根交替灌水处理的POD和CAT酶活性变化趋势相似,均在第9天出现峰值后呈下降的趋势,干旱处理的POD和CAT酶活性则是先显著升高,在第9天后维持在较高水平;3个处理均提高了叶片电导率和MDA含量,其中干旱处理显著高于其他处理,半根交替灌水处理最低。总之,半根交替灌水方式产生的水分胁迫较轻,并在减少灌水量的同时能维持较高的光合效率,可实现果树的节水栽培。 展开更多
关键词 '寒富’苹果 半根交替灌水 半根灌水 净光合速率 抗氧化酶
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部