The paper provides a critical comparison between mesophilic and thermophilic anaerobic treatment of PTA wastewater through diagnosis of a case study. Aspects covered are bioavailability, biodegradability, microbial po...The paper provides a critical comparison between mesophilic and thermophilic anaerobic treatment of PTA wastewater through diagnosis of a case study. Aspects covered are bioavailability, biodegradability, microbial population, thermodynamics, kinetics involved and bio-reactor design for PTA wastewater treatment. The results of the case study suggests that one- stage thermophilic anaerobic reactor coupled with coagulation-flocculation pre-treatment unit and an aerobic post treatment unit could be techno-economically viable for PTA wastewater treatment to ensure that the final effluent quality conforms to the international standard. The in-formation emanated from this study could be useful and thought provoking to the professionals and academia in the area of PTA wastewater treatment and can serve as impetus toward the development of research lines in similar problems like the treatment of other petrochemical wastewater such as phenol-con- taining wastewater, benzene/benzoic acid-con- taining wastewater or wastewater from other similar industrial settings.展开更多
While the transformation of antimony(Sb) in paddy soil has been previously investigated, the biogeochemical processes of highly chemical active Sb in the soil remain poorly understood. In addition, there is a lack of ...While the transformation of antimony(Sb) in paddy soil has been previously investigated, the biogeochemical processes of highly chemical active Sb in the soil remain poorly understood. In addition, there is a lack of quantitative understanding of Sb transformation in soil. Therefore, in this study, the kinetics of exogenous Sb in paddy soils were investigated under anaerobic and aerobic incubation conditions. The dissolved Sb(V) and the Sb(V) extracted by diffusive gradient technique decreased under anaerobic conditions and then increased under aerobic conditions. The redox reaction of Sb occurred, and Sb bioavailability significantly decreased after 55 days of incubation. The kinetics of Fe and the scanning transmission electron microscopy analysis revealed that the Fe oxides were reduced and became dispersed under anaerobic conditions, whereas they were oxidized and re-aggregated during the aerobic stage. In addition, the redox processes of sulfur and nitrogen were detected under both anaerobic and aerobic conditions. Based on these observations, a simplified kinetic model was established to distinguish the relative contributions of the transformation processes. The bioavailability of Sb was controlled by immobilization as a result of S reduction and by mobilization as a result of Fe reductive dissolution and S oxidation, rather than the p H. These processes coupled with the redox reaction of Sb jointly resulted in the complex behavior of Sb transformation under anaerobic and aerobic conditions. The model-based method and findings of this study provide a comprehensive understanding of the Sb transformation in a complex soil biogeochemical system under changing redox conditions.展开更多
文摘The paper provides a critical comparison between mesophilic and thermophilic anaerobic treatment of PTA wastewater through diagnosis of a case study. Aspects covered are bioavailability, biodegradability, microbial population, thermodynamics, kinetics involved and bio-reactor design for PTA wastewater treatment. The results of the case study suggests that one- stage thermophilic anaerobic reactor coupled with coagulation-flocculation pre-treatment unit and an aerobic post treatment unit could be techno-economically viable for PTA wastewater treatment to ensure that the final effluent quality conforms to the international standard. The in-formation emanated from this study could be useful and thought provoking to the professionals and academia in the area of PTA wastewater treatment and can serve as impetus toward the development of research lines in similar problems like the treatment of other petrochemical wastewater such as phenol-con- taining wastewater, benzene/benzoic acid-con- taining wastewater or wastewater from other similar industrial settings.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFD0800700)the National Natural Science Foundation of China(Nos.420307020 and 41977028)Guangdong Key Research and Development Project(No.2019B110207002).
文摘While the transformation of antimony(Sb) in paddy soil has been previously investigated, the biogeochemical processes of highly chemical active Sb in the soil remain poorly understood. In addition, there is a lack of quantitative understanding of Sb transformation in soil. Therefore, in this study, the kinetics of exogenous Sb in paddy soils were investigated under anaerobic and aerobic incubation conditions. The dissolved Sb(V) and the Sb(V) extracted by diffusive gradient technique decreased under anaerobic conditions and then increased under aerobic conditions. The redox reaction of Sb occurred, and Sb bioavailability significantly decreased after 55 days of incubation. The kinetics of Fe and the scanning transmission electron microscopy analysis revealed that the Fe oxides were reduced and became dispersed under anaerobic conditions, whereas they were oxidized and re-aggregated during the aerobic stage. In addition, the redox processes of sulfur and nitrogen were detected under both anaerobic and aerobic conditions. Based on these observations, a simplified kinetic model was established to distinguish the relative contributions of the transformation processes. The bioavailability of Sb was controlled by immobilization as a result of S reduction and by mobilization as a result of Fe reductive dissolution and S oxidation, rather than the p H. These processes coupled with the redox reaction of Sb jointly resulted in the complex behavior of Sb transformation under anaerobic and aerobic conditions. The model-based method and findings of this study provide a comprehensive understanding of the Sb transformation in a complex soil biogeochemical system under changing redox conditions.