期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Alternating segment explicit-implicit scheme for nonlinear third-order KdV equation 被引量:1
1
作者 曲富丽 王文洽 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第7期973-980,共8页
A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segme... A group of asymmetric difference schemes to approach the Korteweg-de Vries (KdV) equation is given here. According to such schemes, the full explicit difference scheme and the full implicit one, an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed. The scheme is linear unconditionally stable by the analysis of linearization procedure, and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy. 展开更多
关键词 KdV equation intrinsic parallelism alternating segment explicit-implicit difference scheme unconditionally linear stable
下载PDF
解Burgers方程的迎风加权交替分块显-隐方法 被引量:1
2
作者 谢树森 宋翠玲 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期167-172,共6页
利用迎风加权格式对二维Burgers方程的对流项进行处理,构造求解二维Burgers方程的一类交替分块显隐的有限差分格式,该方法具有并行本性,且绝对稳定。数值实验表明方法还具有较好的精度。
关键词 BURGERS方程 迎风加权格式 交替分块显隐方法 并行算法
下载PDF
解双曲型方程的几种并行算法 被引量:1
3
作者 谭畅 刘播 《工程数学学报》 CSCD 北大核心 2004年第F12期155-159,共5页
将已有基本差分格式进行处理和组合,构造出了解双曲型方程的几种并行算法,并对其稳定性做出了分析和讨论。
关键词 双曲型方程 差分格式 并行算法 组合 构造 稳定性
下载PDF
An inexact alternating proximal gradient algorithm for nonnegative CP tensor decomposition 被引量:1
4
作者 WANG DeQing CONG FengYu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第9期1893-1906,共14页
Nonnegative tensor decomposition has become increasingly important for multiway data analysis in recent years. The alternating proximal gradient(APG) is a popular optimization method for nonnegative tensor decompositi... Nonnegative tensor decomposition has become increasingly important for multiway data analysis in recent years. The alternating proximal gradient(APG) is a popular optimization method for nonnegative tensor decomposition in the block coordinate descent framework. In this study, we propose an inexact version of the APG algorithm for nonnegative CANDECOMP/PARAFAC decomposition, wherein each factor matrix is updated by only finite inner iterations. We also propose a parameter warm-start method that can avoid the frequent parameter resetting of conventional APG methods and improve convergence performance.By experimental tests, we find that when the number of inner iterations is limited to around 10 to 20, the convergence speed is accelerated significantly without losing its low relative error. We evaluate our method on both synthetic and real-world tensors.The results demonstrate that the proposed inexact APG algorithm exhibits outstanding performance on both convergence speed and computational precision compared with existing popular algorithms. 展开更多
关键词 tensor decomposition nonnegative CANDECOMP/PARAFAC block coordinate descent alternating proximal gradient inexact scheme
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部