近年来,多用户多输入多输出(Multiple-User Multiple-Input Multiple-Output,MU-MIMO)下行链路的预编码算法设计吸引了越来越多研究者的兴趣。然而目前并没有对基站端已知信道误差概率分布且约束条件为单天线功率约束(Per-Antenna Power...近年来,多用户多输入多输出(Multiple-User Multiple-Input Multiple-Output,MU-MIMO)下行链路的预编码算法设计吸引了越来越多研究者的兴趣。然而目前并没有对基站端已知信道误差概率分布且约束条件为单天线功率约束(Per-Antenna Power Constraints,PAPCS)的情况下的线性预编码算法的研究。针对上述情况,以遍历和速率(Expected Sum Rate)最大化为优化准则,主要基于约束随机逐次凸近似(Constrained Stochastic Successive Convex Approximation,CSSCA)、二阶对偶法、交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)及高斯随机化(Gaussian Randomization)设计了线性预编码算法。所提算法的适用场景更符合实际情况,而且实验仿真结果证明,算法的性能较好。展开更多
文摘近年来,多用户多输入多输出(Multiple-User Multiple-Input Multiple-Output,MU-MIMO)下行链路的预编码算法设计吸引了越来越多研究者的兴趣。然而目前并没有对基站端已知信道误差概率分布且约束条件为单天线功率约束(Per-Antenna Power Constraints,PAPCS)的情况下的线性预编码算法的研究。针对上述情况,以遍历和速率(Expected Sum Rate)最大化为优化准则,主要基于约束随机逐次凸近似(Constrained Stochastic Successive Convex Approximation,CSSCA)、二阶对偶法、交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)及高斯随机化(Gaussian Randomization)设计了线性预编码算法。所提算法的适用场景更符合实际情况,而且实验仿真结果证明,算法的性能较好。