期刊文献+
共找到10,016篇文章
< 1 2 250 >
每页显示 20 50 100
Fast alternating direction method of multipliers for total-variation-based image restoration 被引量:1
1
作者 陶敏 《Journal of Southeast University(English Edition)》 EI CAS 2011年第4期379-383,共5页
A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is refo... A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms. 展开更多
关键词 total variation DECONVOLUTION alternating direction method of multiplier
下载PDF
Image reconstruction based on total-variation minimization and alternating direction method in linear scan computed tomography 被引量:6
2
作者 张瀚铭 王林元 +3 位作者 闫镔 李磊 席晓琦 陆利忠 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期582-589,共8页
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac... Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem. 展开更多
关键词 linear scan CT image reconstruction total variation alternating direction method
下载PDF
Reconstruction of electrical capacitance tomography images based on fast linearized alternating direction method of multipliers for two-phase flow system 被引量:4
3
作者 Chongkun Xia Chengli Su +1 位作者 Jiangtao Cao Ping Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第5期597-605,共9页
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ... Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application. 展开更多
关键词 Electrical capacitance tomography Image reconstruction Compressed sensing alternating direction method of multipliers Two-phase flow
下载PDF
Nested Alternating Direction Method of Multipliers to Low-Rank and Sparse-Column Matrices Recovery 被引量:5
4
作者 SHEN Nan JIN Zheng-fen WANG Qiu-yu 《Chinese Quarterly Journal of Mathematics》 2021年第1期90-110,共21页
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ... The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive. 展开更多
关键词 Convex optimization Variational inequality problem alternating direction method of multipliers Low-rank representation Subspace recovery
下载PDF
Alternating Direction Finite Volume Element Methods for Three-Dimensional Parabolic Equations 被引量:1
5
作者 Tongke Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第4期499-522,共24页
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc... This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods. 展开更多
关键词 Three-dimensional parabolic equation alternating direction method finite volume element method error estimate
下载PDF
Full-vectorial finite-difference beam propagation method based on the modified alternating direction implicit method 被引量:1
6
作者 肖金标 孙小菡 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第8期1824-1830,共7页
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ... A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method. 展开更多
关键词 beam propagation method alternating direction implicit algorithm finite difference optical waveguides integrated optics
下载PDF
Impact Force Localization and Reconstruction via ADMM-based Sparse Regularization Method
7
作者 Yanan Wang Lin Chen +3 位作者 Junjiang Liu Baijie Qiao Weifeng He Xuefeng Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期170-188,共19页
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ... In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration. 展开更多
关键词 Impact force identification Non-convex sparse regularization alternating direction method of multipliers Proximal operators
下载PDF
Greedy Randomized Gauss-Seidel Method with Oblique Direction
8
作者 Weifeng Li Pingping Zhang 《Journal of Applied Mathematics and Physics》 2023年第4期1036-1048,共13页
For the linear least squares problem with coefficient matrix columns being highly correlated, we develop a greedy randomized Gauss-Seidel method with oblique direction. Then the corresponding convergence result is ded... For the linear least squares problem with coefficient matrix columns being highly correlated, we develop a greedy randomized Gauss-Seidel method with oblique direction. Then the corresponding convergence result is deduced. Numerical examples demonstrate that our proposed method is superior to the greedy randomized Gauss-Seidel method and the randomized Gauss-Seidel method with oblique direction. 展开更多
关键词 Oblique direction Linear Least Squares Problem Gauss-Seidel method
下载PDF
MIXED FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS AND ITS ALTERNATING-DIRECTION ITERATIVE SCHEME 被引量:1
9
作者 张怀宇 梁栋 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第2期133-150,共18页
In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computat... In this paper, we study the mixed element method for Sobolev equations. A time-discretization procedure is presented and analysed and the optimal order error estimates are derived.For convenience in practical computation, an alternating-direction iterative scheme of the mixed fi-nite element method is formulated and its stability and converbence are proved for the linear prob-lem. A numerical example is provided at the end of this paper. 展开更多
关键词 SOBOLEV equation mixed FINITE ELEMENT method alternating-direction iteration.
下载PDF
Linearized Proximal Alternating Direction Method of Multipliers for Parallel Magnetic Resonance Imaging
10
作者 Benxin Zhang Zhibin Zhu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期763-769,共7页
In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal fu... In this study, we propose a linearized proximal alternating direction method with variable stepsize for solving total variation image reconstruction problems. Our method uses a linearized technique and the proximal function such that the closed form solutions of the subproblem can be easily derived.In the subproblem, we apply a variable stepsize, that is like Barzilai-Borwein stepsize, to accelerate the algorithm. Numerical results with parallel magnetic resonance imaging demonstrate the efficiency of the proposed algorithm. 展开更多
关键词 alternating direction method Barzilai-Borwein stepsize parallel magnetic resonance imaging total variation image reconstruction
下载PDF
Distributed MPC for Reconfigurable Architecture Systems via Alternating Direction Method of Multipliers
11
作者 Ting Bai Shaoyuan Li Yuanyuan Zou 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第7期1336-1344,共9页
This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merel... This paper investigates the distributed model predictive control(MPC)problem of linear systems where the network topology is changeable by the way of inserting new subsystems,disconnecting existing subsystems,or merely modifying the couplings between different subsystems.To equip live systems with a quick response ability when modifying network topology,while keeping a satisfactory dynamic performance,a novel reconfiguration control scheme based on the alternating direction method of multipliers(ADMM)is presented.In this scheme,the local controllers directly influenced by the structure realignment are redesigned in the reconfiguration control.Meanwhile,by employing the powerful ADMM algorithm,the iterative formulas for solving the reconfigured optimization problem are obtained,which significantly accelerate the computation speed and ensure a timely output of the reconfigured optimal control response.Ultimately,the presented reconfiguration scheme is applied to the level control of a benchmark four-tank plant to illustrate its effectiveness and main characteristics. 展开更多
关键词 alternating direction method of multipliers(ADMM)algorithm distributed control model predictive control(MPC) reconfigurable architecture systems.
下载PDF
Optimization of Random Feature Method in the High-Precision Regime
12
作者 Jingrun Chen Weinan E Yifei Sun 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1490-1517,共28页
Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in te... Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in terms of both accuracy and efficiency.Potentially,the optimization problem in the RFM is more difficult to solve than those that arise in traditional methods.Unlike the broader machine-learning research,which frequently targets tasks within the low-precision regime,our study focuses on the high-precision regime crucial for solving PDEs.In this work,we study this problem from the following aspects:(i)we analyze the coeffcient matrix that arises in the RFM by studying the distribution of singular values;(ii)we investigate whether the continuous training causes the overfitting issue;(ii)we test direct and iterative methods as well as randomized methods for solving the optimization problem.Based on these results,we find that direct methods are superior to other methods if memory is not an issue,while iterative methods typically have low accuracy and can be improved by preconditioning to some extent. 展开更多
关键词 Random feature method(RFM) Partial differential equation(PDE) Least-squares problem Direct method Iterative method
下载PDF
Fast Tensor Principal Component Analysis via Proximal Alternating Direction Method with Vectorized Technique
13
作者 Haiyan Fan Gangyao Kuang Linbo Qiao 《Applied Mathematics》 2017年第1期77-86,共10页
This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a c... This paper studies the problem of tensor principal component analysis (PCA). Usually the tensor PCA is viewed as a low-rank matrix completion problem via matrix factorization technique, and nuclear norm is used as a convex approximation of the rank operator under mild condition. However, most nuclear norm minimization approaches are based on SVD operations. Given a matrix , the time complexity of SVD operation is O(mn2), which brings prohibitive computational complexity in large-scale problems. In this paper, an efficient and scalable algorithm for tensor principal component analysis is proposed which is called Linearized Alternating Direction Method with Vectorized technique for Tensor Principal Component Analysis (LADMVTPCA). Different from traditional matrix factorization methods, LADMVTPCA utilizes the vectorized technique to formulate the tensor as an outer product of vectors, which greatly improves the computational efficacy compared to matrix factorization method. In the experiment part, synthetic tensor data with different orders are used to empirically evaluate the proposed algorithm LADMVTPCA. Results have shown that LADMVTPCA outperforms matrix factorization based method. 展开更多
关键词 TENSOR Principal COMPONENT ANALYSIS PROXIMAL alternating direction method Vectorized TECHNIQUE
下载PDF
Superconvergence of Direct Discontinuous Galerkin Methods:Eigen-structure Analysis Based on Fourier Approach
14
作者 Xuechun Liu Haijin Wang +1 位作者 Jue Yan Xinghui Zhong 《Communications on Applied Mathematics and Computation》 EI 2024年第1期257-278,共22页
This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq... This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results. 展开更多
关键词 Direct discontinuous Galerkin(DDG)method with interface correction Symmetric DDG method SUPERCONVERGENCE Fourier analysis Eigen-structure
下载PDF
CHARACTERISTIC FINITE DIFFERENCE ALTERNATING-DIRECTION METHOD ANDANALYSIS FOR NUMERICAL RESERVOIR SIMULATION 被引量:1
15
作者 袁益让 《Acta Mathematica Scientia》 SCIE CSCD 2000年第1期88-96,共9页
Petroleum science has made remarkable progress in organic geochemistry and in the research into the theories of petroleum origin, its transport and accumulation. In estimating the oil-gas resources of a basin, the kno... Petroleum science has made remarkable progress in organic geochemistry and in the research into the theories of petroleum origin, its transport and accumulation. In estimating the oil-gas resources of a basin, the knowledge of its evolutionary history and especially the numerical computation of fluid flow and the history of its changes under heat is vital. The mathematical model call be described as a coupled system of nonlinear partial differentical equations with initial-boundary value problems. This thesis, from actual conditions such as the effect of fluid compressibility and the characteristic of large-scal science-engineering computalion. puts forward a kind of characteristic finite difference alternating-direction scheme. Optimal order estimates in L-2 norm are derived for the error in the approximate solutions. 展开更多
关键词 reservoir simulation COMPRESSIBILITY alternating-direction characteristic finite difference optimal order estimates in L-2
下载PDF
A modified stochastic finite-fault method for estimating strong ground motion:Validation and application
16
作者 Xinjuan He Hua Pan 《Earthquake Science》 2024年第1期36-50,共15页
We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault r... We developed a modified stochastic finite-fault method for estimating strong ground motions.An adjustment to the dynamic corner frequency was introduced,which accounted for the effect of the location of the subfault relative to the hypocenter and rupture propagation direction,to account for the influence of the rupture propagation direction on the subfault dynamic corner frequency.By comparing the peak ground acceleration(PGA),pseudo-absolute response spectra acceleration(PSA,damping ratio of 5%),and duration,the results of the modified and existing methods were compared,demonstrating that our proposed adjustment to the dynamic corner frequency can accurately reflect the rupture directivity effect.We applied our modified method to simulate near-field strong motions within 150 km of the 2008 MW7.9 Wenchuan earthquake rupture.Our modified method performed well over a broad period range,particularly at 0.04-4 s.The total deviations of the stochastic finite-fault method(EXSIM)and the modified EXSIM were 0.1676 and 0.1494,respectively.The modified method can effectively account for the influence of the rupture propagation direction and provide more realistic ground motion estimations for earthquake disaster mitigation. 展开更多
关键词 stochastic finite-fault method dynamic corner frequency Wenchuan earthquake rupture propagation direction
下载PDF
Application of Linearized Alternating Direction Multiplier Method in Dictionary Learning
17
作者 Xiaoli Yu 《Journal of Applied Mathematics and Physics》 2019年第1期138-147,共10页
The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linear... The Alternating Direction Multiplier Method (ADMM) is widely used in various fields, and different variables are customized in the literature for different application scenarios [1] [2] [3] [4]. Among them, the linearized alternating direction multiplier method (LADMM) has received extensive attention because of its effectiveness and ease of implementation. This paper mainly discusses the application of ADMM in dictionary learning (non-convex problem). Many numerical experiments show that to achieve higher convergence accuracy, the convergence speed of ADMM is slower, especially near the optimal solution. Therefore, we introduce the linearized alternating direction multiplier method (LADMM) to accelerate the convergence speed of ADMM. Specifically, the problem is solved by linearizing the quadratic term of the subproblem, and the convergence of the algorithm is proved. Finally, there is a brief summary of the full text. 展开更多
关键词 alternating direction MULTIPLIER method DICTIONARY LEARNING Linearized alternating direction MULTIPLIER Non-Convex Optimization CONVERGENCE
下载PDF
Multichannel Blind CT Image Restoration via Variable Splitting and Alternating Direction Method
18
作者 孙云山 张立毅 +1 位作者 张海燕 张经宇 《Transactions of Tianjin University》 EI CAS 2015年第6期524-532,共9页
Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point ... Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point spread function. The main advantage from multichannel blind CT image restoration is to exploit the diversity and redundancy of information in different acquisitions. The proposed approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is addressed with the alternating direction method of multipliers and simply implemented in the Fourier domain. Numerical experiments illustrate that our method obtains a higher average gain value of at least 1.21 d B in terms of Q metric than the other methods, and it requires only 7 iterations of alternating minimization to obtain a fast convergence. 展开更多
关键词 blind image restoration variable splitting alternating direction method medical CT image
下载PDF
Distributed Alternating Direction Method of Multipliers for Multi-Objective Optimization
19
作者 Hui Deng Yangdong Xu 《Advances in Pure Mathematics》 2022年第4期249-259,共11页
In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algor... In this paper, a distributed algorithm is proposed to solve a kind of multi-objective optimization problem based on the alternating direction method of multipliers. Compared with the centralized algorithms, this algorithm does not need a central node. Therefore, it has the characteristics of low communication burden and high privacy. In addition, numerical experiments are provided to validate the effectiveness of the proposed algorithm. 展开更多
关键词 alternating direction method of Multipliers Distributed Algorithm Multi-Objective Optimization Multi-Agent System
下载PDF
Underdetermined direction of arrival estimation with nonuniform linear motion sampling based on a small unmanned aerial vehicle platform
20
作者 Xinwei Wang Xiaopeng Yan +2 位作者 Tai An Qile Chen Dingkun Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期352-363,共12页
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf... Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method. 展开更多
关键词 Unmanned aerial vehicle(UAV) Uniform linear array(ULA) direction of arrival(DOA) Difference co-array Nonuniform linear motion sampling method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部