期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Randomized Algorithms for Orthogonal Nonnegative Matrix Factorization 被引量:1
1
作者 Yong-Yong Chen Fang-Fang Xu 《Journal of the Operations Research Society of China》 EI CSCD 2023年第2期327-345,共19页
Orthogonal nonnegative matrix factorization(ONMF)is widely used in blind image separation problem,document classification,and human face recognition.The model of ONMF can be efficiently solved by the alternating direc... Orthogonal nonnegative matrix factorization(ONMF)is widely used in blind image separation problem,document classification,and human face recognition.The model of ONMF can be efficiently solved by the alternating direction method of multipliers and hierarchical alternating least squares method.When the given matrix is huge,the cost of computation and communication is too high.Therefore,ONMF becomes challenging in the large-scale setting.The random projection is an efficient method of dimensionality reduction.In this paper,we apply the random projection to ONMF and propose two randomized algorithms.Numerical experiments show that our proposed algorithms perform well on both simulated and real data. 展开更多
关键词 Orthogonal nonnegative matrix factorization Random projection method Dimensionality reduction Augmented lagrangian method Hierarchical alternating least squares algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部