Based on the special positive semidefinite splittings of the saddle point matrix, we propose a new Mternating positive semidefinite splitting (APSS) iteration method for the saddle point problem arising from the fin...Based on the special positive semidefinite splittings of the saddle point matrix, we propose a new Mternating positive semidefinite splitting (APSS) iteration method for the saddle point problem arising from the finite element discretization of the hybrid formulation of the time-harmonic eddy current problem. We prove that the new APSS iteration method is unconditionally convergent for both cases of the simple topology and the general topology. The new APSS matrix can be used as a preconditioner to accelerate the convergence rate of Krylov subspace methods. Numerical results show that the new APSS preconditioner is superior to the existing preconditioners.展开更多
We propose the generation of photonic EPR state from quadratic waveguide array. Both the propagation constant and the nonlinearity in the array are designed to possess a periodical modulation along the propagation dir...We propose the generation of photonic EPR state from quadratic waveguide array. Both the propagation constant and the nonlinearity in the array are designed to possess a periodical modulation along the propagation direction.This ensures that the photon pairs can be generated efficiently through the quasi-phase-matching spontaneous parametric down conversion by holding the spatial EPR entanglement in the fashion of correlated position and anticorrelated momentum. The Schmidt number which denotes the degree of EPR entanglement is calculated and it can approach a high value when the number of illuminated waveguide channels and the length of the waveguide array are properly chosen. These results suggest the quadratic waveguide array as a compact platform for engineering photonic quantum states in a high-dimensional Hilbert space.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 11301521, 11771467, 11071041), the Natural Science Foundation of Fujian Province (Nos. 2016J01005, 2015J01578), and the National Post- doctoral Program for Innovative Talents (No. BX201700234).
文摘Based on the special positive semidefinite splittings of the saddle point matrix, we propose a new Mternating positive semidefinite splitting (APSS) iteration method for the saddle point problem arising from the finite element discretization of the hybrid formulation of the time-harmonic eddy current problem. We prove that the new APSS iteration method is unconditionally convergent for both cases of the simple topology and the general topology. The new APSS matrix can be used as a preconditioner to accelerate the convergence rate of Krylov subspace methods. Numerical results show that the new APSS preconditioner is superior to the existing preconditioners.
基金Supported by the State Key Program for Basic Research in China under Grant No.2012CB921802 the National Natural Science Foundations of China under Grant Nos.91321312,11321063 and 11422438
文摘We propose the generation of photonic EPR state from quadratic waveguide array. Both the propagation constant and the nonlinearity in the array are designed to possess a periodical modulation along the propagation direction.This ensures that the photon pairs can be generated efficiently through the quasi-phase-matching spontaneous parametric down conversion by holding the spatial EPR entanglement in the fashion of correlated position and anticorrelated momentum. The Schmidt number which denotes the degree of EPR entanglement is calculated and it can approach a high value when the number of illuminated waveguide channels and the length of the waveguide array are properly chosen. These results suggest the quadratic waveguide array as a compact platform for engineering photonic quantum states in a high-dimensional Hilbert space.