We present preliminary calibration results for Jason-3 and Sentinel-3A altimeters that we set up in the Wanshan Islands in Guandong Province,China.Two campaigns were carried out in 2018,from March 8 to April 16 and fr...We present preliminary calibration results for Jason-3 and Sentinel-3A altimeters that we set up in the Wanshan Islands in Guandong Province,China.Two campaigns were carried out in 2018,from March 8 to April 16 and from November 3 to December 11,2018.Three GPS reference stations and tide gauges were established on the islands of Zhiwan,Dangan,and Wailingding during the campaigns.The in-situ sea surface height(SSH)of the altimeter footprint was determined using the tide gauge.The tidal and geoid connection between the tide gauge locations and the altimeter footprints were computed with the NAO.99Jb tidal prediction system and the EGM 2008 geoid,respectively.The data of the tide gauges were defi ned using the GPS buoy and GPS reference stations during the campaigns.The results show that the waveform of the altimeters was slightly contaminated by the small islands.The bias associated with Jason-3 and Sentinel-3A amounted to approximately+20.7±49.7 mm and+30.1±39.4 mm,respectively,which agreed well with the results from other in-situ calibration fi elds.This indicates that the Wanshan area was very suitable as an in-situ calibration/validation fi eld.The wet zenith delay(WZD)determined from the Microwave Radiometer(MWR)and the GPS measurements diff ered from each other for the Jason-3 and Sentinel-3A by−6.6±7.4 mm and 0±6.8 mm,respectively.展开更多
The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order...The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed.展开更多
基金Supported by the National Key R&D Program of China(No.2018YFB0504904)the National Natural Science Foundation of China(Nos.41406204,41501417)the Operational Support Service System For Natural Resources Satellite Remote Sensing。
文摘We present preliminary calibration results for Jason-3 and Sentinel-3A altimeters that we set up in the Wanshan Islands in Guandong Province,China.Two campaigns were carried out in 2018,from March 8 to April 16 and from November 3 to December 11,2018.Three GPS reference stations and tide gauges were established on the islands of Zhiwan,Dangan,and Wailingding during the campaigns.The in-situ sea surface height(SSH)of the altimeter footprint was determined using the tide gauge.The tidal and geoid connection between the tide gauge locations and the altimeter footprints were computed with the NAO.99Jb tidal prediction system and the EGM 2008 geoid,respectively.The data of the tide gauges were defi ned using the GPS buoy and GPS reference stations during the campaigns.The results show that the waveform of the altimeters was slightly contaminated by the small islands.The bias associated with Jason-3 and Sentinel-3A amounted to approximately+20.7±49.7 mm and+30.1±39.4 mm,respectively,which agreed well with the results from other in-situ calibration fi elds.This indicates that the Wanshan area was very suitable as an in-situ calibration/validation fi eld.The wet zenith delay(WZD)determined from the Microwave Radiometer(MWR)and the GPS measurements diff ered from each other for the Jason-3 and Sentinel-3A by−6.6±7.4 mm and 0±6.8 mm,respectively.
基金supported by the National Natural Science Foundation of China under Grants No. 42174001
文摘The calibration of the sea surface height(SSH)measured by satellite altimeters is essential to understand altimeter biases.Many factors affects the construction and maintenance of a permanent calibration site.In order to calibrate Chinese satellite altimetry missions,the feasibility of maintaining a calibration site based on the Qianliyan islet in Yellow Sea of China is taken into account.The related calibration facilities,such as the permanent tide gauge,GNSS reference station and meteorological station,were already operated by the Ministry of Natural Resources of China.The data could be fully used for satellite altimeter calibration with small fiscal expenditure.In addition,the location and marine environments of Qianliyan were discussed.Finally,we used the Jason-3 mission to check the possibility of calibration works.The result indicates that the brightness temperatures of three channels measured by microwave radiometer(MWR)and the derived wet tropospheric correction varies smoothly,which means the land contamination to MWR could be ignored.The high frequency waveforms at the Qianliyan site present no obvious difference from the normal waveforms received by satellite radar altimeter over the open ocean.In conclusion,the Qianliyan islet will not influence satellite altimetry observation.Following these analyses,a possible layout and mechanism of the Qianliyan calibration site are proposed.