This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metal...This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metals, semiconductors, organics, biomoleculars, and heterojunctions as typical examples, attention will be focused on the recently established methods to fabricate nanotubes in AAM, including electrochemical deposition, surface sol-gel, modified chemical vapor deposition, atomic layer deposition, and layer-by-layer growth. Every method is demonstrated by one or two reported results. Finally, this review is concluded with some perspectives on the research directions and focuses on the AAM-based nanotubes fields.展开更多
A stable colloidal boehmite sol was made with the aluminium iso propoxide made in China and used to prepare the supported γ alumina membrane using sol gel method. The γ alumina thin layer was characterized by SE...A stable colloidal boehmite sol was made with the aluminium iso propoxide made in China and used to prepare the supported γ alumina membrane using sol gel method. The γ alumina thin layer was characterized by SEM, N 2 sorption method and permeation measurement. The γ alumina membrane was prepared with uniform surface, thickness of 3 μm and average diameter of about 5 nm. The permeabilities of the single gases of H 2, N 2, Ar and their separation factors were measured. The experimental data explained a behavior of Knudsen diffusion for the gas transport through the thin membrane.展开更多
The supported membranes of Al 2O 3 and its modification membranes were prepared.Al 2O 3,Al 2O 3 SiO 2 TiO 2 and Al 2O 3 SiO 2 TiO 2 ZrO 2 membranes were mamufatured by the slip casting process using...The supported membranes of Al 2O 3 and its modification membranes were prepared.Al 2O 3,Al 2O 3 SiO 2 TiO 2 and Al 2O 3 SiO 2 TiO 2 ZrO 2 membranes were mamufatured by the slip casting process using mixing boehmite,silicate,titania and zirconia sols under proper conditions,then the composite membrane was prepared.The structure and characteristics of the membrane were determined by XRD,SEM and AFM measurement.The conditions of preparation of the membrane are discussed.The thickness of the layer is about 1-2μm,the diameter of an average pore is 200-300nm and has a narrow pore distribution without crack forming.By changing the ratios of Al∶Si∶Ti∶Zr(mol),variations of surface pore size of Al 2O 3 SiO 2 TiO 2 ZrO 2 membrane can be gained.展开更多
The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pore...The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and thelayer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm themethodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.展开更多
Unsupported Nd-doped Al2O3 membranes have been prepared with a sol-gel treat- nt by using aluminium isopropoxide and Nd(NO3)3 as the main raw materials. The properties of Nd-doped Al2O3 membranes were characterized ...Unsupported Nd-doped Al2O3 membranes have been prepared with a sol-gel treat- nt by using aluminium isopropoxide and Nd(NO3)3 as the main raw materials. The properties of Nd-doped Al2O3 membranes were characterized by XRD, DTA-TG, IR and N2 adsorption. The effects of Nd-doping on the phase composition, thermal stability as well as applications of pore- structure of Nd-doped Al2O3 membranes at high temperature were discussed. The results show that Nd-doping can raise the transition temperature rom γ-Al2O3 to α-Al2O3, enhance the thermal stability of Al2O3 membranes, and evidently improve the pore-structural parameters of Al2O3 mem- branes applied at higher temperatures.展开更多
Objective The correlation between various formative conditions and the pore characterizationsof the anodic alumina membrane is investigated to seek the optimal conditions for the formation of anodic aluminamembrane. M...Objective The correlation between various formative conditions and the pore characterizationsof the anodic alumina membrane is investigated to seek the optimal conditions for the formation of anodic aluminamembrane. Methods High purity aluminum foils are used as the starting materials. The anodization is conduc-ted in three types of electrolytes, 3% sulfuric acid, 5% sulfuric acid and 2. 7% oxalic acid, respectively, with dif-ferent voltages at for 48h. The characterizations of the pore size, the effective porosity and the pore porosity areobserved and determined by scanning electron microscopy. The hydraulic conductances of the membranes are meas-ured to confirm that the pores are open and evaluate the permselectivity of the membranes. Results The experi-mental result shows that the ordered pore arrays are obtained for oxidation under our experimental conditions. Withthe increasing of the voltage, the pore size and pore porosity increased significantly (P <0.05) , while the effectiveporosity decreased significantly (P <0.05) with the same electrolyte. The pore size formed in 3% sulfuric acid or5% sulfuric acid is much smaller than in 2. 7% oxalic acid as an electrolyte. The hydraulic conductance of anodicalumina membrane that formed under our experimental condition is higher than those of the membranes are availablecurrently used in clinical. Conclusion The results suggest that the optimal conditions for the formation of anodicalumina membrane that used in hemodialysis are in 3% or 5% sulfuric acid with 12. 5V to 17. 5V at for 48h.展开更多
Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, ...Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, for the first time, atomic layer deposition(ALD) is an effective strategy to conveniently upgrade the filtration performances of PPHF membranes. The chemical and morphological changes of the deposited PPHF membranes are characterized by spectral, compositional, microscopic characterizations and protein adsorption measurements. Al_2O_3 is distributed along the cross section of the PP hollow fibers, with decreasing concentration from the outer surface to the inner surface. The pore size of the outer surface can be easily turned by altering the ALD cycles. Interestingly, the hollow fibers become much more ductile after deposition as their elongation at break is increased more than six times after deposition with 100 cycles. The deposited membranes show simultaneously enhanced water permeance and retention after deposition with moderate ALD cycle numbers.For instance, after 50 ALD cycles a 17% increase in water permeance and one-fold increase in BSA rejection are observed. Moreover, the PP membranes exhibit improved fouling-resistance after ALD deposition.展开更多
Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. Th...Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. The immersion time was 15- 40 s for nanotubes and over 60 s for nanowires. The topography and crystalline structure of the nanowire arrays were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). It was found that the length and diameter of the Ni0.5Zn0.5Fe2O4 nanowires are related to the thickness of the AAM and the diameter of the pores. The results indicated that the Ni0.5Zn0.5Fe2O4 nanowires are uniform and parallel to each other.展开更多
Highly ordered nickel monoxide (NiO) nanowire arrays were fabricated by sol-gel synthesis within the pores of anodic alumina membrane (AAM). Scanning electron microscopy (SEM), high resolution transmission elect...Highly ordered nickel monoxide (NiO) nanowire arrays were fabricated by sol-gel synthesis within the pores of anodic alumina membrane (AAM). Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) were used to characterize the topography and crystalloid structure of NiO nanowire arrays. The length and diameter of the NiO nanowires depended on the thickness of the AAM and the diameter of the pores. The results indicated that the NiO nanowires were uniformly assembled into the ordered nanopores of the AAM and paralleled to each other. Nickel monoxide nanotubes were also fabricated with the same method by changing the immersing time. This new method to prepare NiO nanowire arrays may be important from gas sensors to various engineering materials.展开更多
Pulsed electrodeposited technique is applied to fabricate ZnTe nanowire arrays with different diameters into the anodic alumina membrane in citric acid solution. The x-ray powder diffraction, scanning electron microsc...Pulsed electrodeposited technique is applied to fabricate ZnTe nanowire arrays with different diameters into the anodic alumina membrane in citric acid solution. The x-ray powder diffraction, scanning electron microscopy and transmission electron microscopy indicate that the high ordered, uniform and single-crystalline nanowires have been fabricated. The optical absorption spectra of the nanowire array show that the optical absorption band edge of the ZnTe nanowire array exhibit a blue shift compared with that of bulk ZnTe, and the nonlinear current-voltage characteristic is observed.展开更多
Within this work,it is studied the photo-thermionic and photocurrent behavior of two kinds of carbon nanotube arrays,grown by chemical vapor deposition.One kind is fabricated by using a co-catalyst bilayer approach an...Within this work,it is studied the photo-thermionic and photocurrent behavior of two kinds of carbon nanotube arrays,grown by chemical vapor deposition.One kind is fabricated by using a co-catalyst bilayer approach and other by a catalyst-free route by using a porous alumina membrane as a template.The carbon nanotubes fabricated by both approaches exhibit low crystallinity.To compute the thermal properties of the nanomaterials,a photothermal experiment was measured at 1064 nm wavelength,and numerical simulations were conducted to analyze the photo-thermionic emission dynamics.The high absorbance of the carbon nanotubes leads to reach temperatures above 1500 K,with time response in the millisecond order and emission currents in the nanoampere range.On the other hand,the photodetector behavior was confirmed by a single pulse experiment that induces fast photocurrent recognition associated to a photodiode.Our results highlighted the coexistence of stable states related to high-power and high-speed electronic conversion energy dependent on the growth mechanism of carbon nanotubes.展开更多
基金the support provided by the Japan Society for the Promotion of Science(JSPS)Fellowship program at the National Institute of Advanced Industrial Science and Technology,Tsukuba,Japanthe National Natural Science Foundation of China(Grant No.10704074)+1 种基金the Special Project of Excellent Young Researchers of Anhui Province,Chinathe Project of Excellent President Scholarship of Chinese Academy of Sciences.
文摘This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metals, semiconductors, organics, biomoleculars, and heterojunctions as typical examples, attention will be focused on the recently established methods to fabricate nanotubes in AAM, including electrochemical deposition, surface sol-gel, modified chemical vapor deposition, atomic layer deposition, and layer-by-layer growth. Every method is demonstrated by one or two reported results. Finally, this review is concluded with some perspectives on the research directions and focuses on the AAM-based nanotubes fields.
文摘A stable colloidal boehmite sol was made with the aluminium iso propoxide made in China and used to prepare the supported γ alumina membrane using sol gel method. The γ alumina thin layer was characterized by SEM, N 2 sorption method and permeation measurement. The γ alumina membrane was prepared with uniform surface, thickness of 3 μm and average diameter of about 5 nm. The permeabilities of the single gases of H 2, N 2, Ar and their separation factors were measured. The experimental data explained a behavior of Knudsen diffusion for the gas transport through the thin membrane.
基金Project cooperated with College of Environment Engineering,Huazhong University of Technology
文摘The supported membranes of Al 2O 3 and its modification membranes were prepared.Al 2O 3,Al 2O 3 SiO 2 TiO 2 and Al 2O 3 SiO 2 TiO 2 ZrO 2 membranes were mamufatured by the slip casting process using mixing boehmite,silicate,titania and zirconia sols under proper conditions,then the composite membrane was prepared.The structure and characteristics of the membrane were determined by XRD,SEM and AFM measurement.The conditions of preparation of the membrane are discussed.The thickness of the layer is about 1-2μm,the diameter of an average pore is 200-300nm and has a narrow pore distribution without crack forming.By changing the ratios of Al∶Si∶Ti∶Zr(mol),variations of surface pore size of Al 2O 3 SiO 2 TiO 2 ZrO 2 membrane can be gained.
基金This work was supported by the National Natural Science Foundation of China (No. 20023003 and 20128004).
文摘The anodic porous alumina membranes with a definite pore diameter and aspect ratio were used as templates tosynthesize polymer pillared layer structures. The pillared polymer was produced in the template membrane pores, and thelayer on the template surfaces. Rigid cured epoxy resin, polystyrene and soft hydrogel were chosen to confirm themethodology. The pillars were in the form of either tubes or fibers, which were controlled by the alumina membrane pore surface wettability. The structural features were confirmed by scanning electron microscopy results.
基金This work was supported by the Natural Science Foundation of Fujian province (No. JB01002)
文摘Unsupported Nd-doped Al2O3 membranes have been prepared with a sol-gel treat- nt by using aluminium isopropoxide and Nd(NO3)3 as the main raw materials. The properties of Nd-doped Al2O3 membranes were characterized by XRD, DTA-TG, IR and N2 adsorption. The effects of Nd-doping on the phase composition, thermal stability as well as applications of pore- structure of Nd-doped Al2O3 membranes at high temperature were discussed. The results show that Nd-doping can raise the transition temperature rom γ-Al2O3 to α-Al2O3, enhance the thermal stability of Al2O3 membranes, and evidently improve the pore-structural parameters of Al2O3 mem- branes applied at higher temperatures.
文摘Objective The correlation between various formative conditions and the pore characterizationsof the anodic alumina membrane is investigated to seek the optimal conditions for the formation of anodic aluminamembrane. Methods High purity aluminum foils are used as the starting materials. The anodization is conduc-ted in three types of electrolytes, 3% sulfuric acid, 5% sulfuric acid and 2. 7% oxalic acid, respectively, with dif-ferent voltages at for 48h. The characterizations of the pore size, the effective porosity and the pore porosity areobserved and determined by scanning electron microscopy. The hydraulic conductances of the membranes are meas-ured to confirm that the pores are open and evaluate the permselectivity of the membranes. Results The experi-mental result shows that the ordered pore arrays are obtained for oxidation under our experimental conditions. Withthe increasing of the voltage, the pore size and pore porosity increased significantly (P <0.05) , while the effectiveporosity decreased significantly (P <0.05) with the same electrolyte. The pore size formed in 3% sulfuric acid or5% sulfuric acid is much smaller than in 2. 7% oxalic acid as an electrolyte. The hydraulic conductance of anodicalumina membrane that formed under our experimental condition is higher than those of the membranes are availablecurrently used in clinical. Conclusion The results suggest that the optimal conditions for the formation of anodicalumina membrane that used in hemodialysis are in 3% or 5% sulfuric acid with 12. 5V to 17. 5V at for 48h.
基金Supported by the National Basic Research Program of China(2015CB655301)the Natural Science Foundation of Jiangsu Province(BK20150063)+1 种基金the Program of Excellent Innovation Teams of Jiangsu Higher Education Institutionsthe Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Porous polypropylene hollow fiber(PPHF) membranes are widely used in liquid purification. However, the hydrophobicity of polypropylene(PP) has limited its applications in water treatment. Herein, we demonstrate that, for the first time, atomic layer deposition(ALD) is an effective strategy to conveniently upgrade the filtration performances of PPHF membranes. The chemical and morphological changes of the deposited PPHF membranes are characterized by spectral, compositional, microscopic characterizations and protein adsorption measurements. Al_2O_3 is distributed along the cross section of the PP hollow fibers, with decreasing concentration from the outer surface to the inner surface. The pore size of the outer surface can be easily turned by altering the ALD cycles. Interestingly, the hollow fibers become much more ductile after deposition as their elongation at break is increased more than six times after deposition with 100 cycles. The deposited membranes show simultaneously enhanced water permeance and retention after deposition with moderate ALD cycle numbers.For instance, after 50 ALD cycles a 17% increase in water permeance and one-fold increase in BSA rejection are observed. Moreover, the PP membranes exhibit improved fouling-resistance after ALD deposition.
文摘Highly ordered nanowire/tube arrays of Ni0.5Zn0.5Fe2O4were fabricated by the sol-gel method in the pores of anodic alumina membrane (AAM). Whether nanowires or nanotubes were fabricated depends on immersion time. The immersion time was 15- 40 s for nanotubes and over 60 s for nanowires. The topography and crystalline structure of the nanowire arrays were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). It was found that the length and diameter of the Ni0.5Zn0.5Fe2O4 nanowires are related to the thickness of the AAM and the diameter of the pores. The results indicated that the Ni0.5Zn0.5Fe2O4 nanowires are uniform and parallel to each other.
文摘Highly ordered nickel monoxide (NiO) nanowire arrays were fabricated by sol-gel synthesis within the pores of anodic alumina membrane (AAM). Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) were used to characterize the topography and crystalloid structure of NiO nanowire arrays. The length and diameter of the NiO nanowires depended on the thickness of the AAM and the diameter of the pores. The results indicated that the NiO nanowires were uniformly assembled into the ordered nanopores of the AAM and paralleled to each other. Nickel monoxide nanotubes were also fabricated with the same method by changing the immersing time. This new method to prepare NiO nanowire arrays may be important from gas sensors to various engineering materials.
基金Supported by the National Natural Science Foundation of China under Grant No 10474098.
文摘Pulsed electrodeposited technique is applied to fabricate ZnTe nanowire arrays with different diameters into the anodic alumina membrane in citric acid solution. The x-ray powder diffraction, scanning electron microscopy and transmission electron microscopy indicate that the high ordered, uniform and single-crystalline nanowires have been fabricated. The optical absorption spectra of the nanowire array show that the optical absorption band edge of the ZnTe nanowire array exhibit a blue shift compared with that of bulk ZnTe, and the nonlinear current-voltage characteristic is observed.
基金CONICYT-ANID for FONDECYT grants 3190552(JAGM),and 3201030(RV)National Doctoral Scholarship 1201589(LFI),and FONDEQUIP projects EQM150101 and EQM140142 for partial financial support.Alsothe support of the Chilean Ministry of Economy through the Millennium Nucleus MULTIMAT e ICM/MINECOM.
文摘Within this work,it is studied the photo-thermionic and photocurrent behavior of two kinds of carbon nanotube arrays,grown by chemical vapor deposition.One kind is fabricated by using a co-catalyst bilayer approach and other by a catalyst-free route by using a porous alumina membrane as a template.The carbon nanotubes fabricated by both approaches exhibit low crystallinity.To compute the thermal properties of the nanomaterials,a photothermal experiment was measured at 1064 nm wavelength,and numerical simulations were conducted to analyze the photo-thermionic emission dynamics.The high absorbance of the carbon nanotubes leads to reach temperatures above 1500 K,with time response in the millisecond order and emission currents in the nanoampere range.On the other hand,the photodetector behavior was confirmed by a single pulse experiment that induces fast photocurrent recognition associated to a photodiode.Our results highlighted the coexistence of stable states related to high-power and high-speed electronic conversion energy dependent on the growth mechanism of carbon nanotubes.