Alumina-Zirconia (Al2O3-ZrO2) composites especially Zirconia Toughened Alumina (ZTA) shows better mechanical properties over alumina. Al2O3-ZrO2 composites were prepared by powder compaction method varying 3 mol% yttr...Alumina-Zirconia (Al2O3-ZrO2) composites especially Zirconia Toughened Alumina (ZTA) shows better mechanical properties over alumina. Al2O3-ZrO2 composites were prepared by powder compaction method varying 3 mol% yttria stabilized zirconia (3Y-ZrO2) content from 0 to 20 vol% using small amount of MgO as sintering aid. The composites were sintered for two hours in air at 1580°C. At this temperature maximum density was achieved 99.31% of theoretical density for composite containing 20 vol% 3Y-ZrO2. Density measurement of sintered composites was carried out using Archimedes’s method. Hardness and fracture toughness measurement was carried out using Vickers indentation. Phase content and t-ZrO2 retention were detected by means of X-ray diffraction (XRD). Microstructure of the composites and grain size of alumina and zirconia was determined by Scanning Electron Microscopic (SEM) analysis. Maximum microhardness (17.46 GPa) was achieved for composite containing 5 vol% ZrO2 and maximum flexural strength (684.32 MPa) and fracture toughness (10.33 MPam0.5) was achieved for composite containing 20 vol% of 3Y-ZrO2. The aim of the present work is to investigate the optimum 3Y-ZrO2 content for obtaining maximum density, microhardness, flexural strength and fracture toughness of Al2O3-ZrO2 composites.展开更多
The impact-abrasive wear behavior of ZTA(zirconia toughened alumina)particle(ZTAp)and NbC particle(NbCp)reinforced Fe60 matrix composites(ZTAp-NbCp/Fe60)were investigated.Specimens of pure Fe60 matrix material,NbCp re...The impact-abrasive wear behavior of ZTA(zirconia toughened alumina)particle(ZTAp)and NbC particle(NbCp)reinforced Fe60 matrix composites(ZTAp-NbCp/Fe60)were investigated.Specimens of pure Fe60 matrix material,NbCp reinforced Fe60 composite(NbCp/Fe60)and ZTAp-NbCp/Fe60 with different contents of ZTAp were prepared through vacuum sintering and tested on an MLD-10B Impact Wear Rig.As revealed by the results,NbCp could strengthen Fe60 matrix,and had fine grain strengthening effect on Fe60matrix.When the mass fraction of ZTAp was 5%-15%,the impact-abrasive wear performance of ZTAp-NbCp/Fe60 composites was better than that of Fe60 and NbCp/Fe60.When the mass fraction was 15%,the ZTApNbCp/Fe60 had the best performance.ZTAp could weaken the impact and wear effect of abrasive particles on the composite and protect the matrix.Cracks occured at the interface and at defects in the ZTAp.The former leaded to ZTAp shedding,while the latter leaded to ZTAp fracturing.In both cases,the performance of the composite material would decrease.展开更多
Mesoporous SiO2-ZrO7 nanocomposite was successfully prepared by using supramolecular tfiblock copolymer as the template through evaporation-induced self-assembly approach. The textural and structural properties were c...Mesoporous SiO2-ZrO7 nanocomposite was successfully prepared by using supramolecular tfiblock copolymer as the template through evaporation-induced self-assembly approach. The textural and structural properties were characterized by X-ray diffraction, nitrogen adsorption analysis, and transmission electron microscope. Comparison between pure mesoporous silica and mesoporous silica-zirconia nanocomposite was also presented in this work. The surface area, pore size, and pore volume decreased as the Zr doping in the mesoporous silica framework. But the obtained nanocomposite maintained the cubic Im3m-type mesoporous structure.展开更多
This study aimed to evaluate the effects of universal primers on the tensile bond strength between zirconia and resin composites.Zirconia specimens were divided into five groups based on the surface treatment with the...This study aimed to evaluate the effects of universal primers on the tensile bond strength between zirconia and resin composites.Zirconia specimens were divided into five groups based on the surface treatment with the following primers:MP(Monobond Plus),SU(ScotchBond Universal),AZ(AZ Primer),BM(Beauty bond Multi),and BL(Bondmer Lightless).After priming,stainless steel rods were bonded to the zirconia specimens with composite resin.The tensile bond strength test was performed:stored at room temperature for 1 day;stored in distilled water at 37°C for 7 days;and underwent thermal cycling.The BL group demonstrated a significantly higher tensile bond strength than other groups when stored at room temperature for 1 day(p<0.05).The primer that acted via chemical polymerization appeared to be most effective in improving the bond strength between the two materials in this study.展开更多
To fabricate the metal-ceramics multi-layer hollow functionally gradient materials(FGMs) that might meet the requirement of repeated service and long working time of high temperature burners, such as spacecraft engine...To fabricate the metal-ceramics multi-layer hollow functionally gradient materials(FGMs) that might meet the requirement of repeated service and long working time of high temperature burners, such as spacecraft engine, the microstructure and properties of composite of stainless steel and partially stabilized zirconia were investigated. Samples of different proportions of stainless steel to partially yttria-stabilized zirconia were fabricated by powder extrusion and sintering method. Shrinkage, relative density, microstructure, micro-Vickers hardness, compression strength, bending strength, fractography morphology and electrical resistivity of sintered samples with different proportions of stainless steel were measured. The results show that threshold of metallic matrix composite(MMC) is approximately equal to 60%(volume fraction) stainless steel. The samples with 0 to 50%(volume fraction) stainless steel indicate ceramic brittleness and non-cutability, and the samples with 70% to 100%(volume fraction) stainless steel indicate metallic plasticity and cutability.展开更多
The present study aims to develop zirconia-Silica sand nanoparticles composites through powder processing route and to study the physical properties, mechanical properties and microstructure of the composites. Zirconi...The present study aims to develop zirconia-Silica sand nanoparticles composites through powder processing route and to study the physical properties, mechanical properties and microstructure of the composites. Zirconia based silica sand nanoparticles composite with 5, 10, 15 and 20 wt.% were developed through powder processing technique and sintered at 1500 ℃ for two hours. A decreasing trend of green density however an improvement in sintered density was observed. Also the addition of silica sand nanoparticles with 20 wt.% increased the hardness up to 12.45 GPa and microstructures indicated the diffusion mechanism of silica sand nanoparticles into pore sites of the composites.展开更多
Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides compo...Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides composite powder addition on oxidation resistance of the Al2O3 - C refractories was investigated by measuring the thickness of oxidation layer. Phase compositions of the Al2O3 - C refractories before and after oxidation were investigated by X-ray diffraction ( XRD ). Results show that the oxidation resistance of the Al2O3 - C refractories can be obviously improved by adding the synthesized ZrO2 - nitrides composite powder. The formation of mullite and zircon in the oxidation layer results in the densification of oxidation layer, which prevents oxygen diffusion and bnproves the oxidation resistance of the Al2O3 - C refractories.展开更多
The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into t...The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into the ZrO2 matrix where the quantity of additive Y2O3 is 3.5% (mole fraction), the growth of ZrO2 grains is efficiently inhibited, which helps the ZrO2 grains exist in a metastable tetragonal manner; thus higher strength and toughness are acquired. When the content of alumina is 20% (mass fraction), the bending strength and fracture toughness of the composites are 676.7 MPa and 10 MPa·m1/2 respectively, the mechanical behaviors are close to those prepared with ZrO2 and Al2O3 powders synthesized through wet chemical approach. The mechanical behaviors of the composites are well improved owing to the dispersion toughening of alumina grains and phase transformation toughening of zirconia grains.展开更多
In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or...In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or ZrO2-SiC composite powder synthesized from zircon respectively to Al2O3- C refractories, pressing at 200 MPa, drying fully at 250℃, and then carbon embedded firing at 1400℃ for 2 h. Oxidation resistance and thermal shock resistance were researched, phase composition was analyzed by XRD. The results showed that the oxidation of SiC in additives could protect carbon in specimens effectively and thus decreased the mass loss ratio and oxidation area, and improved the oxidation resistance of the specimen. Thermal shock resistance was improved owing to the micro crack toughening of ZrO2 and grain toughening of SiC. In this experiment, the specimens with 6 wt% ZrO2 -SiC composite powder or 6 wt% SiC powder had the best oxidation resistance and thermal shock resistance.展开更多
Two classes of composite materials are considered: classical metaleceramic composites with reinforcing hard inclusions as well as hard ceramics matrix with soft gel inclusions. Movable cellular automaton method is use...Two classes of composite materials are considered: classical metaleceramic composites with reinforcing hard inclusions as well as hard ceramics matrix with soft gel inclusions. Movable cellular automaton method is used for modeling the mechanical behaviors of such different heterogeneous materials. The method is based on particle approach and may be considered as a kind of discrete element method. The main feature of the method is the use of many-body forces of inter-element interaction within the formalism of simply deformable element approximation. It was shown that the strength of reinforcing particles and the width of particle-binder interphase boundaries had determining influence on the service characteristics of metaleceramic composite. In particular, the increasing of strength of carbide inclusions may lead to significant increase in the strength and ultimate strain of composite material. On the example of porous zirconia ceramics it was shown that the change in the mechanical properties of pore surface leads to the corresponding change in effective elastic modulus and strength limit of the ceramic sample. The less is the pore size, the more is this effect. The increase in the elastic properties of pore surface of ceramics may reduce its fracture energy.展开更多
ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, ...ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, 6%, 9% and 12% ) prepared by sol - gel method were added to replace the equal amount of ( Mg, Y) - PSZfines. Effects of Al2O3 - ZrO2 composite powders on physical properties, phase composition and microstructure of the ZrO2 sizing nozzles were studied. The results show that: the performances of the modified sizing nozzles with 3% Al2O3 - ZrO2 composite powder are better than those of the nobles without composite powder used in current production process, and the thermal shock resistance of the ,former nozzles is six times of that of the latter one.展开更多
Cermet composites containing mixture of noble metal phase and electrolyte phase are the state-of-the-art electrode materials used for electrochemical sensor and solid oxide fuel cell(SOFC). A steady polarization model...Cermet composites containing mixture of noble metal phase and electrolyte phase are the state-of-the-art electrode materials used for electrochemical sensor and solid oxide fuel cell(SOFC). A steady polarization model was developed. The model was based on electronic and ionic transfer process together with the electrochemical reaction regardless of mass transport in the electrode. The modelling results can help to understand the electrochemistry of cermet composite electrode.展开更多
Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the...Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thickness.展开更多
目的:探究纤维桩+复合树脂+氧化锆全瓷冠修复根管治疗后后牙楔状缺损患者的效果及美观满意度。方法:纳入2022年1月-2023年1月在笔者医院就诊的102例后牙楔状缺损患者,根据患者自主选择意愿分为研究组(n=50)和对照组(n=52),对照组行金属...目的:探究纤维桩+复合树脂+氧化锆全瓷冠修复根管治疗后后牙楔状缺损患者的效果及美观满意度。方法:纳入2022年1月-2023年1月在笔者医院就诊的102例后牙楔状缺损患者,根据患者自主选择意愿分为研究组(n=50)和对照组(n=52),对照组行金属桩核+金属烤瓷冠修复,研究组行纤维桩+复合树脂+氧化锆全瓷冠修复。6个月后,对比两组临床疗效,观察两组牙周健康情况(牙龈指数、菌斑指数、龈沟出血指数),检测牙周炎症[肿瘤坏死因子-α(Tumor necrosis factor-α,TNF-α)、白细胞介素-4(Interleukin-4,IL-4)、白细胞介素-6(Interleukin-6,IL-6)],调查美观满意度[美国公共健康服务标准(United states public health service,USPHS)]和实用度(咀嚼功能、咬合情况、语言功能),比较两组并发症发生情况。结果:治疗后,研究组治疗有效率达92.00%,高于对照组的76.92%(P<0.05);两组牙周健康相关指数及TNF-α、IL-4、IL-6均较治疗前降低,且研究组降低幅度大于对照组(P<0.05);治疗后,研究组牙齿表面形态、色泽协调性、边缘着色满意度均高于对照组(P<0.05),两组咀嚼功能、咬合情况、语言功能均较治疗前提高,但差异无统计学意义(P>0.05);两组并发症发生率比较治疗组低于对照组(P<0.05)。结论:采用纤维桩+复合树脂+氧化锆全瓷冠修复根管治疗后后牙楔状缺损能够减轻炎症反应,提升患者牙周健康,增加美观满意度及实用度,疗效显著,安全性高。展开更多
文摘Alumina-Zirconia (Al2O3-ZrO2) composites especially Zirconia Toughened Alumina (ZTA) shows better mechanical properties over alumina. Al2O3-ZrO2 composites were prepared by powder compaction method varying 3 mol% yttria stabilized zirconia (3Y-ZrO2) content from 0 to 20 vol% using small amount of MgO as sintering aid. The composites were sintered for two hours in air at 1580°C. At this temperature maximum density was achieved 99.31% of theoretical density for composite containing 20 vol% 3Y-ZrO2. Density measurement of sintered composites was carried out using Archimedes’s method. Hardness and fracture toughness measurement was carried out using Vickers indentation. Phase content and t-ZrO2 retention were detected by means of X-ray diffraction (XRD). Microstructure of the composites and grain size of alumina and zirconia was determined by Scanning Electron Microscopic (SEM) analysis. Maximum microhardness (17.46 GPa) was achieved for composite containing 5 vol% ZrO2 and maximum flexural strength (684.32 MPa) and fracture toughness (10.33 MPam0.5) was achieved for composite containing 20 vol% of 3Y-ZrO2. The aim of the present work is to investigate the optimum 3Y-ZrO2 content for obtaining maximum density, microhardness, flexural strength and fracture toughness of Al2O3-ZrO2 composites.
基金Funded by the National Key Research and Development Program(No.2017YFB0305105)the National Natural Science Foundation of China(No.51571210)。
文摘The impact-abrasive wear behavior of ZTA(zirconia toughened alumina)particle(ZTAp)and NbC particle(NbCp)reinforced Fe60 matrix composites(ZTAp-NbCp/Fe60)were investigated.Specimens of pure Fe60 matrix material,NbCp reinforced Fe60 composite(NbCp/Fe60)and ZTAp-NbCp/Fe60 with different contents of ZTAp were prepared through vacuum sintering and tested on an MLD-10B Impact Wear Rig.As revealed by the results,NbCp could strengthen Fe60 matrix,and had fine grain strengthening effect on Fe60matrix.When the mass fraction of ZTAp was 5%-15%,the impact-abrasive wear performance of ZTAp-NbCp/Fe60 composites was better than that of Fe60 and NbCp/Fe60.When the mass fraction was 15%,the ZTApNbCp/Fe60 had the best performance.ZTAp could weaken the impact and wear effect of abrasive particles on the composite and protect the matrix.Cracks occured at the interface and at defects in the ZTAp.The former leaded to ZTAp shedding,while the latter leaded to ZTAp fracturing.In both cases,the performance of the composite material would decrease.
文摘Mesoporous SiO2-ZrO7 nanocomposite was successfully prepared by using supramolecular tfiblock copolymer as the template through evaporation-induced self-assembly approach. The textural and structural properties were characterized by X-ray diffraction, nitrogen adsorption analysis, and transmission electron microscope. Comparison between pure mesoporous silica and mesoporous silica-zirconia nanocomposite was also presented in this work. The surface area, pore size, and pore volume decreased as the Zr doping in the mesoporous silica framework. But the obtained nanocomposite maintained the cubic Im3m-type mesoporous structure.
文摘This study aimed to evaluate the effects of universal primers on the tensile bond strength between zirconia and resin composites.Zirconia specimens were divided into five groups based on the surface treatment with the following primers:MP(Monobond Plus),SU(ScotchBond Universal),AZ(AZ Primer),BM(Beauty bond Multi),and BL(Bondmer Lightless).After priming,stainless steel rods were bonded to the zirconia specimens with composite resin.The tensile bond strength test was performed:stored at room temperature for 1 day;stored in distilled water at 37°C for 7 days;and underwent thermal cycling.The BL group demonstrated a significantly higher tensile bond strength than other groups when stored at room temperature for 1 day(p<0.05).The primer that acted via chemical polymerization appeared to be most effective in improving the bond strength between the two materials in this study.
文摘To fabricate the metal-ceramics multi-layer hollow functionally gradient materials(FGMs) that might meet the requirement of repeated service and long working time of high temperature burners, such as spacecraft engine, the microstructure and properties of composite of stainless steel and partially stabilized zirconia were investigated. Samples of different proportions of stainless steel to partially yttria-stabilized zirconia were fabricated by powder extrusion and sintering method. Shrinkage, relative density, microstructure, micro-Vickers hardness, compression strength, bending strength, fractography morphology and electrical resistivity of sintered samples with different proportions of stainless steel were measured. The results show that threshold of metallic matrix composite(MMC) is approximately equal to 60%(volume fraction) stainless steel. The samples with 0 to 50%(volume fraction) stainless steel indicate ceramic brittleness and non-cutability, and the samples with 70% to 100%(volume fraction) stainless steel indicate metallic plasticity and cutability.
文摘The present study aims to develop zirconia-Silica sand nanoparticles composites through powder processing route and to study the physical properties, mechanical properties and microstructure of the composites. Zirconia based silica sand nanoparticles composite with 5, 10, 15 and 20 wt.% were developed through powder processing technique and sintered at 1500 ℃ for two hours. A decreasing trend of green density however an improvement in sintered density was observed. Also the addition of silica sand nanoparticles with 20 wt.% increased the hardness up to 12.45 GPa and microstructures indicated the diffusion mechanism of silica sand nanoparticles into pore sites of the composites.
文摘Oxidation of carbon is the main problem or Al2O3 - C refractories. ZrO2 - nitrides composite powder was synthesized through carbothermal reduction and nitridation (CRN) of zircon. The effect of ZrO2 - nitrides composite powder addition on oxidation resistance of the Al2O3 - C refractories was investigated by measuring the thickness of oxidation layer. Phase compositions of the Al2O3 - C refractories before and after oxidation were investigated by X-ray diffraction ( XRD ). Results show that the oxidation resistance of the Al2O3 - C refractories can be obviously improved by adding the synthesized ZrO2 - nitrides composite powder. The formation of mullite and zircon in the oxidation layer results in the densification of oxidation layer, which prevents oxygen diffusion and bnproves the oxidation resistance of the Al2O3 - C refractories.
文摘The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into the ZrO2 matrix where the quantity of additive Y2O3 is 3.5% (mole fraction), the growth of ZrO2 grains is efficiently inhibited, which helps the ZrO2 grains exist in a metastable tetragonal manner; thus higher strength and toughness are acquired. When the content of alumina is 20% (mass fraction), the bending strength and fracture toughness of the composites are 676.7 MPa and 10 MPa·m1/2 respectively, the mechanical behaviors are close to those prepared with ZrO2 and Al2O3 powders synthesized through wet chemical approach. The mechanical behaviors of the composites are well improved owing to the dispersion toughening of alumina grains and phase transformation toughening of zirconia grains.
文摘In order to improve oxidation resistance and ther- mal shock resistance of Al2O3-C refractories, two groups of specimens were prepared with phenolic resin as binder, adding 0, 2 wt% , 4 wt% and 6 wt% commercial SiC or ZrO2-SiC composite powder synthesized from zircon respectively to Al2O3- C refractories, pressing at 200 MPa, drying fully at 250℃, and then carbon embedded firing at 1400℃ for 2 h. Oxidation resistance and thermal shock resistance were researched, phase composition was analyzed by XRD. The results showed that the oxidation of SiC in additives could protect carbon in specimens effectively and thus decreased the mass loss ratio and oxidation area, and improved the oxidation resistance of the specimen. Thermal shock resistance was improved owing to the micro crack toughening of ZrO2 and grain toughening of SiC. In this experiment, the specimens with 6 wt% ZrO2 -SiC composite powder or 6 wt% SiC powder had the best oxidation resistance and thermal shock resistance.
基金the Projects Nos. III.23.2.3 (I.S. Konovalenko, S.P. Buyakova) and III.23.2.4 (S.G. Psakhie) of the Basic Scientific Research Program of State Academies of Sciences for 2013e2020the RFBR Project No. 12-01-00805-a (A.Yu. Smolin, E.V. Shilko)the grant No. 14-19-00718 of the Russian Science Foundation (A.Yu. Smolin, E.V. Shilko, S.V. Astafurov)
文摘Two classes of composite materials are considered: classical metaleceramic composites with reinforcing hard inclusions as well as hard ceramics matrix with soft gel inclusions. Movable cellular automaton method is used for modeling the mechanical behaviors of such different heterogeneous materials. The method is based on particle approach and may be considered as a kind of discrete element method. The main feature of the method is the use of many-body forces of inter-element interaction within the formalism of simply deformable element approximation. It was shown that the strength of reinforcing particles and the width of particle-binder interphase boundaries had determining influence on the service characteristics of metaleceramic composite. In particular, the increasing of strength of carbide inclusions may lead to significant increase in the strength and ultimate strain of composite material. On the example of porous zirconia ceramics it was shown that the change in the mechanical properties of pore surface leads to the corresponding change in effective elastic modulus and strength limit of the ceramic sample. The less is the pore size, the more is this effect. The increase in the elastic properties of pore surface of ceramics may reduce its fracture energy.
基金financially supported by National Natural Science Foundation of China(Grant No.51372193)Natural Science Basic Research Fund of Shaanxi Province(Grant No.2014JM6224)
文摘ZrO2 sizing nozzles with a basic Jormulation were prepared using 45% (by mass, the same hereinafter ) ( Mg, Y) - PSZ aggregate, 55% ( Mg, Y) - PSZ fines and 5% PVA binder. Al2O3 - ZrO2 composite powders ( 3%, 6%, 9% and 12% ) prepared by sol - gel method were added to replace the equal amount of ( Mg, Y) - PSZfines. Effects of Al2O3 - ZrO2 composite powders on physical properties, phase composition and microstructure of the ZrO2 sizing nozzles were studied. The results show that: the performances of the modified sizing nozzles with 3% Al2O3 - ZrO2 composite powder are better than those of the nobles without composite powder used in current production process, and the thermal shock resistance of the ,former nozzles is six times of that of the latter one.
文摘Cermet composites containing mixture of noble metal phase and electrolyte phase are the state-of-the-art electrode materials used for electrochemical sensor and solid oxide fuel cell(SOFC). A steady polarization model was developed. The model was based on electronic and ionic transfer process together with the electrochemical reaction regardless of mass transport in the electrode. The modelling results can help to understand the electrochemistry of cermet composite electrode.
文摘Compositionally graded composite of alumina-20%zirconia (volume fraction) was fabricated by using centrifugal casting incorporated with relatively thin slip. An EPMA analysis exhibited a nearly linear variation of the alumina/zirconia ratio along the centrifugal direction; zirconia tended to accumulate in the bottom section, while alumina in the top section. Such a graded structure exhibited a considerably higher flexural strength when the alumina rich surface was subjected to a tensile stress than compositionally uniform composite of the same average composition. Fracture toughness measurement across the specimen thickness by indentation method revealed that the crack lengths along the vertical and horizontal directions were different. The anisotropy of the fracture toughness was accounted for by the variation of the residual stress across the specimen thickness.
文摘目的:探究纤维桩+复合树脂+氧化锆全瓷冠修复根管治疗后后牙楔状缺损患者的效果及美观满意度。方法:纳入2022年1月-2023年1月在笔者医院就诊的102例后牙楔状缺损患者,根据患者自主选择意愿分为研究组(n=50)和对照组(n=52),对照组行金属桩核+金属烤瓷冠修复,研究组行纤维桩+复合树脂+氧化锆全瓷冠修复。6个月后,对比两组临床疗效,观察两组牙周健康情况(牙龈指数、菌斑指数、龈沟出血指数),检测牙周炎症[肿瘤坏死因子-α(Tumor necrosis factor-α,TNF-α)、白细胞介素-4(Interleukin-4,IL-4)、白细胞介素-6(Interleukin-6,IL-6)],调查美观满意度[美国公共健康服务标准(United states public health service,USPHS)]和实用度(咀嚼功能、咬合情况、语言功能),比较两组并发症发生情况。结果:治疗后,研究组治疗有效率达92.00%,高于对照组的76.92%(P<0.05);两组牙周健康相关指数及TNF-α、IL-4、IL-6均较治疗前降低,且研究组降低幅度大于对照组(P<0.05);治疗后,研究组牙齿表面形态、色泽协调性、边缘着色满意度均高于对照组(P<0.05),两组咀嚼功能、咬合情况、语言功能均较治疗前提高,但差异无统计学意义(P>0.05);两组并发症发生率比较治疗组低于对照组(P<0.05)。结论:采用纤维桩+复合树脂+氧化锆全瓷冠修复根管治疗后后牙楔状缺损能够减轻炎症反应,提升患者牙周健康,增加美观满意度及实用度,疗效显著,安全性高。